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1 Introduction

The experimental results on neutrinos provide strong evidence in favour of non-zero neu-

trino masses and mixing angles. Various neutrino oscillation experiments suggest that the

mixing pattern of the three light neutrinos is bilarge, that is to say there are two large

mixing angles and one small mixing angle. The data can be explained very well with the

following set of mass squared differences and mixing angles [1, 2]

7.05 × 10−5eV2 ≤∆m2
21 ≤ 8.34 × 10−5eV2 (3σ), (1.1)

2.07 × 10−3eV2 ≤|∆m2
31| ≤ 2.75 × 10−3eV2 (3σ), (1.2)

30◦ ≤ θ12 ≤ 37◦, 35◦ ≤ θ23 ≤ 54◦, θ13 ≤ 13◦ (3σ), (1.3)

where ∆m2
ij ≡ m2

i − m2
j .

In order to explain the results in eqs. (1.1)–(1.3), one needs to go to a theory beyond

the standard model (SM). A very interesting possibility to look for new physics is supersym-

metry (SUSY) which has the ability to provide a solution of the so-called ‘gauge hierarchy

problem’ connected with the mass of the Higgs boson. SUSY predicts new particles at the

TeV scale which can be tested at the forthcoming Large Hadron Collider (LHC). Naturally

it is tempting to see whether TeV scale SUSY is also one of the candidates which can

explain the observed pattern of neutrino mass squared differences and mixing. There have

been several proposals in recent times, which attempt to explain the experimental data on

neutrinos in the context of a supersymmetric theory. Perhaps the most well studied class

of models in this context is the one which includes R-parity violation [3, 4] in the Minimal

Supersymmetric Standard Model (MSSM). Neutrino mass squared differences and mixing

angles have been calculated under various assumptions and it has been found that the

neutrino data can be explained well when contributions to the neutrino mass matrix at the

tree and one-loop level are considered [5, 6].

On the other hand, though SUSY provides some elegant solutions to accommodate the

experimental data on neutrinos, it has been plagued by a few urgent questions which do not

have very satisfactory answers yet. One of them is the so-called “µ-problem”[7] related to

the bilinear term µĤ1Ĥ2 in the MSSM superpotential. The electroweak symmetry breaking

requires the value of µ to be roughly of the order of a few hundreds of GeV. This requires,

in the absence of any fine cancellation, that µ is roughly of the order of the soft scalar

masses and both of them should be somewhere around a TeV or a few hundreds of GeV.

Since µ parameter respects SUSY, there is no obvious reason why it should be of the same

order as SUSY breaking soft scalar masses. This defines the “µ-problem”. There have

been several attempts to address the solution to this problem and all of them requires the

vacuum expectation value(s) (VEVs) of some additional field(s) to generate the µ-term

after the symmetry breaking.

One of the solutions is the next-to-minimal supersymmetric standard model (NMSSM),

which introduces a superfield Ŝ, singlet under the SM gauge group. The µ term is absent

from the superpotential and it arises when the scalar component of Ŝ acquires a VEV.

This VEV is determined in terms of the soft supersymmetry breaking terms through the

– 2 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
9

minimization condition. If the SUSY breaking scale is close to the electroweak (EW) scale

then the effective µ term is also of the order of the EW scale. However, as in the case

of MSSM, the NMSSM also cannot explain the observed pattern of neutrino masses and

mixing.

It is also important to note in this context, that another very well known mechanism

of generating small neutrino masses and bilarge mixing angles in a SUSY model, compat-

ible with the experimental data, is the seesaw mechanism which introduces gauge singlet

neutrino superfields. In such cases the MSSM superpotential contains additional terms

involving the Yukawa couplings for neutrinos as well as Majorana masses for the gauge sin-

glet neutrinos. In the conventional scenario, the neutrino Yukawa couplings are assumed

to be ∼ O(1), whereas the Majorana masses for the gauge singlet neutrinos are taken

somewhere around 1014 GeV or so. In this case light neutrino masses as small as 10−2 eV

can be generated. One viable alternative to the usual seesaw mechanism is to consider the

TeV-scale seesaw. This possibility is very interesting since it may provide a direct way to

probe the gauge singlet neutrino mass scale at the LHC and does not need to introduce a

very high energy scale in the theory. However, in order to generate small active neutrino

masses one needs to consider neutrino Yukawa couplings to be of order 10−6. This choice

is reasonable since we know that the electron Yukawa coupling should also be of the order

of 10−6.

In this work we study in details, a model of neutrino masses and mixing which intro-

duces the gauge singlet neutrino superfields (ν̂c
i ) to solve the µ problem in a way similar

to that of NMSSM. The terms in the superpotential involving the ν̂c
i include the neutrino

Yukawa couplings, the trilinear interaction terms among the singlet neutrino superfields as

well as a term which couples the Higgs superfields to the ν̂c
i . In addition, there are corre-

sponding soft SUSY breaking terms in the scalar potential. When the scalar components

of ν̂c
i get VEVs through the minimization conditions of the scalar potential, an effective µ

term with an EW scale magnitude is generated [8]. In addition, small Majorana masses of

the active neutrinos are generated due to the mixing with the neutralinos as well as due to

the seesaw mechanism involving the gauge singlet neutrinos. In such a scenario, we aim to

explain the experimental data on neutrinos discussed in the beginning. In particular, we

show that it is possible to provide a theory of neutrino masses and mixing explaining the

experimental data, even with a flavour diagonal neutrino Yukawa coupling matrix, without

resort to an arbitrary flavour structure in the neutrino sector. This essentially happens be-

cause of the mixing involved in the neutralino-neutrino (both doublet and singlet) system

mentioned above. We perform a detailed analytical and numerical work and show that

the three flavour neutrino data can be accommodated in such a scenario. In addition, we

observe that in this model different neutrino mass hierarchies can also be obtained with

correct mixing pattern, at the tree level.

In this model the neutral Higgs bosons mix with the sneutrinos and charged Higgs

bosons mix with the charged sleptons. The corresponding scalar, pseudoscalar and charged

scalar mass squared matrices are enlarged and we take into account the constraints on the

parameters coming from the positivity of the squared scalar masses. In the fermionic

sector, in addition to the neutralino-neutrino mixing there is mixing also between the

– 3 –
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charginos and the charged leptons. This can also have implications for phenomenological

studies, particularly in the context of future colliders. Because of the mixing between the

neutralinos and the neutrinos, the lightest neutralino, which is the lightest superparticle

(LSP) for most of the parameter space, can have novel decay modes which can be correlated

with the neutrino mixing pattern. This can provide some unique signatures of such a

scenario which can be tested at the LHC.

As we have mentioned earlier, that in order to get the correct light neutrino mass

scales, the neutrino Yukawa couplings should be of the order of 10−6 or so. This is because

the TeV scale VEVs of the singlet neutrinos induce Majorana mass terms of themselves

also at the TeV scale. Similarly, the neutralino-neutrino mixing provides correct light

neutrino mass scales only when the Yukawa couplings of the neutrinos are somewhere close

to that of the electron. This model has been named as the “µνSSM” in ref. [8]. Thus in

this model, an interesting proposal has been given, where the generation of small neutrino

masses and the solution to the µ problem can be accommodated with the same set of

gauge singlet neutrino superfields without introducing an extra singlet such as in the case

of NMSSM. The spectrum and parameter space of this model, with three gauge singlet

neutrino superfields, were discussed in [9]. However, a detailed discussion of the issue of

neutrino masses and bilarge neutrino mixing, in order to accommodate the three flavour

neutrino data, has been lacking and that is what we want to provide in the present work.

We would like to emphasize here that our analysis shows that even with flavour diagonal

neutrino Yukawa couplings, the resulting structure of the effective mass matrix of the light

neutrinos can explain the bilarge pattern of mixing. In addition, we explore the correlation

between neutrino mixing and the decay pattern of the LSP in this model and discuss some

other interesting phenomenological implications.

Other models which address the neutrino experimental data and the µ problem are

essentially extensions of NMSSM. One of these proposals [10] include both the gauge singlet

neutrino superfields (ν̂c
i ) and the extra singlet (Ŝ) of the NMSSM. In this case the Majorana

masses of the singlet neutrinos are also generated at the EW scale through the VEV of

the scalar component of Ŝ. R-parity may be broken spontaneously and the light neutrino

masses are generated through the seesaw at the EW scale. Another possibility is discussed

in ref. [11], where the effective bilinear R-parity violating terms are generated through the

VEV of the singlet scalar S. Naturally, in this case only one neutrino mass is generated

at the tree level whereas the other two masses are generated at the loop level. In [12],

two neutrino masses are generated at the tree level by including explicit bilinear R-parity

violating terms in addition to the R-parity breaking term involving Ŝ.

The plan of the paper is the following. We start with the description of the model

in section II by writing down the superpotential and the soft supersymmetry breaking

interaction terms. We also derive the minimization equations of the scalar potential and

discuss some issues related to the vacuum expectation values of the left sneutrinos. In

section III we continue our discussion of the scalar sector with a more detailed look. Sec-

tion IV describes the fermionic sector of the model where neutralinos mix with both the

doublet and singlet neutrinos and the charginos mix with the charged leptons. In section

V we provide a detailed discussion of the effective mass matrix of the three light neutri-

– 4 –
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nos, arising because of the neutralino-neutrino mixing. Analytical expressions of the mass

eigenvalues and eigenvectors are derived under certain conditions, using degenerate per-

turbation theory. We construct the neutrino mixing matrix and show that it is possible

to have two large and one small mixing angles in general. A detailed numerical analysis

has been performed and we compare our results with that obtained using the approximate

analytical formulae. We show that for realistic parameter choices, it is possible to fit the

three flavour global neutrino data in this scenario, even with a flavour diagonal neutrino

Yukawa coupling matrix. The decays of the lightest supersymmetric particle are discussed

in section VI and it has been observed that certain decay branching ratios are correlated

with the neutrino mixing angles. We make concluding remarks in section VII with possible

future directions of our work. The details of various scalar mass squared matrices and the

Feynman rules for the LSP decay calculations are relegated to the appendices.

2 The model and its minima

2.1 Superpotential

In this section we introduce the model along the lines of ref. [8], discuss its basic features and

set our notations. We introduce three gauge singlet neutrino superfields, ν̂c
i (i = e, µ, τ), in

addition to the fields of the minimal supersymmetric standard model. The superpotential

of the model is written as

W = ǫab(Y
ij
u Ĥb

2Q̂
a
i û

c
j + Y ij

d Ĥa
1 Q̂b

i d̂
c
j + Y ij

e Ĥa
1 L̂b

i ê
c
j + Y ij

ν Ĥb
2L̂

a
i ν̂

c
j )

− ǫabλ
iν̂c

i Ĥ
a
1 Ĥb

2 +
1

3
κijkν̂c

i ν̂
c
j ν̂

c
k, (2.1)

where Ĥ1 and Ĥ2 are the down-type and up-type Higgs superfields, respectively. The Q̂i

are doublet quark superfields, ûc
j [d̂c

j ] are singlet up-type [down-type] quark superfields. The

L̂i are the doublet lepton superfields, and the êc
j are the singlet charged lepton superfields.

Here a, b are SU(2) indices, and ǫ12 = −ǫ21 = 1. Note that the usual bilinear µ-term

of the MSSM is absent from the superpotential whereas two additional trilinear terms

are introduced involving the Higgs superfields, Ĥ1 and Ĥ2, and the three gauge singlet

neutrino superfields, ν̂c
i . This is done by imposing a Z3 symmetry which is also used in

the case of NMSSM. If the scalar potential of the model is such that non-zero vacuum

expectation values of the scalar components (ν̃c
i ) of the singlet superfields ν̂c

i are induced,

an effective bilinear term µĤa
1 Ĥb

2 is generated, where the coefficient µ ≡ λi〈ν̃c
i 〉. In the

presence of soft supersymmetry breaking, it is usually expected that the VEVs of ν̃c
i are at

the electroweak scale. Hence the value of µ is of the order of the electroweak scale as long

as the dimensionless couplings λi are ∼ O(1). This gives us a solution to the so-called “µ-

problem”. The last term in the superpotential with the coefficient κijk is included in order

to avoid an unacceptable axion associated to the breaking of a global U(1) symmetry [13].

This term generates effective Majorana masses for the singlet neutrinos at the electroweak

scale.

The last two terms in (2.1) explicitly break lepton number (L) and hence the R-parity,

which is defined by R = (−1)L+3B+2s. Here B is the baryon number and s is the spin. Note

– 5 –
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that R = +1 for particles and −1 for superpartners. Since lepton number is explicitely

broken, no unwanted massless Majoron appears in this model. One should also notice

that the term in the superpotential involving the neutrino Yukawa couplings Y ij
ν , generate

effective bilinear R-parity violating interactions ǫiĤ2L̂i. Here ǫi is determined in terms of

the VEVs of ν̃c
i and is given by ǫi = Y ij

ν 〈ν̃c
j 〉. R-parity breaking implies that the lightest

supersymmetric particle (LSP) is not stable and it cannot be a candidate for dark matter.

The decay of the LSP may produce some interesting signatures at the LHC, which can

have certain correlations with the neutrino oscillation data. In addition, one can measure

displaced vertices originating from the LSP decay.

It should be mentioned here that neutrino masses and bilarge neutrino mixing have also

been studied in an R-parity violating supersymmetric theory with gauge singlet neutrino

superfields [14]. However, in that analysis terms of the type ν̂cĤ1Ĥ2 have been dropped

from the superpotential because of very small coefficient. Analysis has also been carried

out in the context of the observed baryon asymmetry of the Universe [15]. Finally, one

should note that the discrete Z3 symmetry of the superpotential is spontaneously broken

in the vacuum. This might lead to cosmological domain wall problem [16]. However, the

solutions to this problem exist [17] and will also work in this case.

2.2 Soft terms

Let us now specify the soft-supersymmetry-breaking terms of this model. We will con-

fine ourselves in the framework of supergravity mediated supersymmetry breaking. The

Lagrangian Lsoft, containing the soft-supersymmetry-breaking terms is given by

−Lsoft = (m2
Q̃
)ijQ̃a∗

i Q̃a
j + (m2

ũc)ijũc∗

i ũc
j + (m2

d̃c)
ij d̃c∗

i d̃c
j + (m2

L̃
)ijL̃a∗

i L̃a
j

+ (m2
ẽc)ij ẽc∗

i ẽc
j + m2

H1
Ha∗

1 Ha
1 + m2

H2
Ha∗

2 Ha
2 + (m2

ν̃c)ij ν̃c∗
i ν̃c

j

+ ǫab

[

(AuYu)ijHb
2Q̃

a
i ũ

c
j + (AdYd)

ijHa
1 Q̃b

i d̃
c
j + (AeYe)

ijHa
1 L̃b

i ẽ
c
j + H.c.

]

+

[

ǫab(AνYν)
ijHb

2L̃
a
i ν̃

c
j − ǫab(Aλλ)iν̃c

i H
a
1Hb

2 +
1

3
(Aκκ)ijkν̃c

i ν̃
c
j ν̃

c
k + H.c.

]

− 1

2

(

M3λ̃3λ̃3 + M2λ̃2λ̃2 + M1λ̃1λ̃1 + H.c.
)

. (2.2)

In eq. (2.2), the first two lines consist of squared-mass terms of squarks, sleptons

(including the gauge singlet sneutrinos ν̃c
i ) and Higgses. The next two lines contain the

trilinear scalar couplings. Finally, in the last line of eq. (2.2), M3,M2, and M1 are Majorana

masses corresponding to SU(3), SU(2) and U(1) gauginos λ̃3, λ̃2, and λ̃1, respectively. The

tree-level scalar potential receives the usual D and F term contributions, in addition to the

terms from Lsoft.

2.3 The neutral scalar potential and the electroweak symmetry breaking con-

ditions

We assume that only the neutral scalar fields develop in general the following vacuum

expectation values while minimizing the scalar potential :

〈H0
1 〉 = v1 , 〈H0

2 〉 = v2 , 〈ν̃i〉 = νi , 〈ν̃c
i 〉 = νc

i . (2.3)

– 6 –
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The tree level neutral scalar potential looks like

〈Vneutral〉 =

∣

∣

∣

∣

∑

i,j

Y ij
ν νiν

c
j −

∑

i

λiνc
i v1

∣

∣

∣

∣

2

+
∑

j

∣

∣

∣

∣

∑

i

Y ij
ν νiv2 − λjv1v2 +

∑

i,k

κijkνc
i ν

c
k

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∑

i

λiνc
i v2

∣

∣

∣

∣

2

+
∑

i

∣

∣

∣

∣

∑

j

Y ij
ν v2ν

c
j

∣

∣

∣

∣

2

+

(

g2
1 + g2

2

8

)

[

∑

i

|νi|2 + |v1|2 − |v2|2
]2

+ m2
H2

|v2|2 + m2
H1

|v1|2 +
∑

i,j

(m2
L̃
)ijν∗

i νj +
∑

i,j

(m2
ν̃c)ijνc∗

i νc
j

+





∑

i,j

(AνYν)
ijνiν

c
jv2 −

∑

i

(Aλλ)iνc
i v1v2 +

∑

i,j,k

1

3
(Aκκ)ijkνc

i ν
c
jν

c
k + H.c.



 .

(2.4)

One important thing is to notice that the potential is bounded from below because

the coefficient of the fourth power of all the eight superfields are positive. We shall further

assume that all the parameters present in the scalar potential are real. From eq. (2.4), the

minimization conditions with respect to νc
i νi, v2, v1 are

2
∑

j

uij
c ζj +

∑

k

Y ki
ν rk

c v2
2 + ρiη + µλiv2

2 +
∑

j

(m2
ν̃c)jiνc

j + (Axx)i = 0, (2.5)

∑

j

Yν
ijv2ζ

j + γgξυνi + ri
cη +

∑

j

(m2
L̃
)jiνj +

∑

j

(AνYν)
ijνc

jv2 = 0, (2.6)

∑

j

ρjζj +
∑

i

ri
c
2
v2 + µ2v2 − γgξυv2 +

∑

i

(AνYν)
ijνiν

c
j − (Aλλ)iνc

i v1 + m2
H2

v2 = 0, (2.7)

−
∑

j

λjv2ζ
j + γgξυv1 + µ2v1 − µ

∑

j

rj
cνj + m2

H1
v1 − (Aλλ)iνc

i v2 = 0, (2.8)

where

(Axx)i =
∑

j

(AνYν)
jiνjv2 +

∑

j,k

(Aκκ)ijkνc
jν

c
k − (Aλλ)iv1v2,

ζj =
∑

i,k

κijkνc
i ν

c
k +

∑

k

Y kj
ν v2νk − λjv1v2,

η =
∑

i,j

Y ij
ν νiν

c
j −

(

∑

i

λiνc
i

)

v1,

µ =
∑

i

λiνc
i,

γg =
1

4
(g2

1 + g2
2),

ξυ =

(

∑

i

ν2
i + v2

1 − v2
2

)

,

ρi =
∑

j

(Y ji
ν νj − λiv1),

– 7 –
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ri
c = ǫi =

∑

j

Y ij
ν νc

j ,

ri =
∑

j

Y ij
ν νj,

uij
c =

∑

k

κijkνc
k. (2.9)

In deriving the above equations, it has been assumed that κijk, (Aκκ)ijk, Y ij
ν , (AνYν)

ij ,

(m2
ν̃c)ij , (m2

L̃
)ij are all symmetric in i, j, k.

Note that the Dirac masses for neutrinos are given by mij
D ≡ Y ij

ν v2. From present day

experiments it is well known that neutrino masses are very small. This implies that the

neutrino Yukawa couplings must also be very small ∼ O (10−7), in order to get correct

neutrino mass scale using TeV scale seesaw mechanism. This immediately tells us that in

the limit Y ij
ν → 0, eq. (2.6) implies that νi → 0. So in order to get appropriate neutrino

mass scale both Y ij
ν and νi have to be small.

Ignoring the terms of the second order in Y ij
ν and assuming (ν2

i + v2
1 − v2

2) ≈ (v2
1 − v2

2),

(m2
L̃
)ij = (m2

L̃
)δij , we can easily solve eq. (2.6) as (using eq. (2.9))

νi ≈ −
{

Yν
ikukj

c v2 − µv1Y
ij
ν + (AνYν)

ijv2

γg(v
2
1 − v2

2) + (m2
L̃
)

}

νc
j +

{

Yν
ijλjv1v

2
2

γg(v
2
1 − v2

2) + (m2
L̃
)

}

. (2.10)

Note from eq. (2.10), that the left handed sneutrinos can acquire, in general, non-vanishing,

non-degenerate VEVs even in the limit of zero vacuum expectation values of the gauge

singlet sneutrinos. However, zero VEVs of all the three gauge singlet sneutrinos is not an

acceptable solution since in that case no µ-term will be generated. Moreover, one needs

to ensure that the extremum value of the potential corresponds to the minimum of the

potential, by studying the second derivatives.

3 The scalar sector

The scalar sector of this model enhances from that of MSSM, because of the choice of

the superpotential in eq. (2.1) (fourth, fifth and the sixth term). In this case, the neu-

tral Higgs bosons can mix with both the doublet and gauge-singlet sneutrinos. The CP-

odd(pseudoscalar) and CP-even(scalar) mass squared matrices are now 8 × 8, considering

all three generations of doublet and singlet sneutrinos. Similarly the charged Higgs can mix

with the charged sleptons and thus the charged scalar mass squared matrix is enhanced to

8× 8. We have considered only the CP-preserving case and hence all the VEVs are chosen

to be real. The scalar sector of this model has been addressed also in a recent work [9].

The details of various scalar mass squared matrices are given in appendix A.

For our analytical and numerical calculations in the later part of the paper, we have

assumed that (m2
L̃
)ij = (m2

L̃
)δij , (m2

ν̃c)ij = (m2
ν̃c)δij , and Y ij

ν = 0, if i 6= j. We have

further assumed that κijk are flavour-diagonal as well as flavour-blind, i.e., κijk = κ if

i = j = k and zero otherwise. Similarly, we have assumed a flavour-blind coupling λi = λ

for i = 1, 2, 3. We will see that even with such simplifying assumptions, we can fit the
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global three flavour neutrino data in this model. We will use the following procedure

for all our subsequent analysis. Using the minimization conditions, we will solve for the

vacuum expectation values νi and νc
i . We will choose the parameters in such a way that

the values of νc
i will give an acceptable number for the µ-parameter (µ = λ

∑

i νc
i ). As

a cross check we confirm the existence of two Goldstone bosons in the pseudoscalar and

charged scalar mass-squared matrices. In addition, we check that all the eigenvalues of the

scalar, pseudoscalar, and charged scalar mass-squared matrices (apart from the Goldstone

bosons) should come as positive for a minima.

Additional constraints on the parameter space can come from the existence of false

minima. A detailed discussion on this issue has been presented in ref. [9] and the regions

excluded by the existence of false minima have been shown. One can check from these

figures that mostly the lower part of the region allowed by the absence of tachyons, are

excluded by the existence of false minima. In our analysis, we have chosen the parameter

points in such a way that they should be well above the regions disallowed by the existence

of false minima. Nevertheless, in the case of gauge-singlet neutrino (νc) dominated lightest

neutralino (to be discussed later), the value of κ that we have chosen is 0.07 with two

different values of λ, namely, 0.1 and 0.29. In this case, there is a possibility that these

points might fall into the regions disallowed by the existence of false minima. However, we

have checked that even if we take the value of κ to be higher (0.2 or so), with appropriately

chosen λ, our conclusions do not change much. For such a point in the parameter space, it

is likely that the existence of false minima can be avoided. A more detailed study on this

issue is beyond the scope of the present paper.

Let us also mention here that the sign of the µ-term is controlled by the sign of the

VEV νc (assuming a positive λ), which is cotrolled by the signs of Aλλ and Aκκ. If Aλλ

is negative and Aκκ is positive then the sign of the µ parameter is negative whereas for

opposite signs of the above quantities, we get a positive sign for the µ parameter.

The scalar mass-squared matrices (both CP odd and CP even) and the vacuum ex-

pectation values νc
i are not very sensitive to the change in neutrino Yukawa couplings (Yν

∼ O (10−7)) and the corresponding soft parameter AνYν (∼ O (10−4)GeV). On the other

hand, the values of tan β and the coefficients λ and κ are very important in order to satisfy

various constraints on the scalar sector mentioned earlier. In figure 1, we have plotted the

allowed regions in the (λ–κ) plane for tan β = 10.

The values of other parameters are chosen to be mL̃ = 400 GeV, mν̃c = 300 GeV,

Y 11
ν = 5.0 × 10−7, Y 22

ν = 4.0 × 10−7, Y 33
ν = 3.0 × 10−7, (AνYν)

ij = 1 TeV × Y ij
ν , (Aλλ) =

−1 TeV × λ, and (Aκκ) = 1 TeV × κ. The upper limit of the value of κ is taken to be ∼
0.7 because of the constraints coming from the existence of Landau pole [9]. With these

values of different parameters satisfying the constraints in the scalar sector, we will go on to

calculate the neutrino masses and the mixing patterns as well as the decays of the lightest

neutralino in this model as discussed in the next few sections.

It should be mentioned at this point that the radiative corrections to the light Higgs

mass, can be significant in some regions of the parameter space as discussed in ref. [9].

It has been shown that the light Higgs mass larger than the LEP lower limit of 114 GeV

can be obtained with the value of At (trilinear coupling in the scalar sector for the stop)
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Figure 1. Allowed regions in (λ–κ) plane which satisfy various constraints on the scalar sector, for

tanβ = 10. λ and κ were allowed to vary from 0.005 to 0.50 and 0.005 to 0.70, respectively.

within 1–2.4 TeV and when the mixing of the light Higgs with the right-handed sneutrino

is small. The latter requirement is fulfilled in most of the cases that we have considered

and in some cases the mixing is slightly larger. However, there is always the freedom of

choosing the value of At appropriately. Hence, it would be fair to say that the experimental

limits on the light Higgs boson mass can be satisfied in our analysis. The parameter points

we have chosen here are sample points with different dominant composition of the lightest

neutralino. Since we have a large parameter space, it is always possible to choose a differ-

ent parameter point with the same characteristic features satisfying all the experimental

constraints.

4 The fermionic sector

4.1 The neutral fermions

In this model, because of the breaking of R-parity, two neutral gauginos, B̃0(= −iλ̃1) and

W̃ 0
3 (= −iλ̃3

2) and two neutral higgsinos (H̃0
1 and H̃0

2 ) are now mixed with the neutrinos

(both νi and νc
i ). As can be seen from the superpotential (fourth and fifth term in eq.

(2.1)), the fermionic partners of ν̃c
i and ν̃i mix with the neutral higgsinos [8, 9]. The neutral

gauginos are mixed with the left-handed neutrinos through the vacuum expectation values

of the doublet sneutrinos. Mass matrices for the neutral and charged fermion sectors,

involving all three generations of neutrinos (both doublet and singlet) and charged leptons,

have been addressed also in [9].

In the weak interaction basis defined by

Ψ0T
=
(

B̃0, W̃ 0
3 , H̃0

1 , H̃0
2 , νc

e , ν
c
µ, νc

τ , νe, νµ, ντ

)

, (4.1)

the neutral fermion mass term in the Lagrangian is of the form

Lmass
neutral = −1

2
Ψ0TMnΨ0 + H.c., (4.2)

where Mn includes all three generations of doublet and gauge singlet neutrinos and thus

it is a 10× 10 matrix. The massless neutrinos become massive due to this mixing with the
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neutralinos and the gauge singlet neutrinos. The three lightest eigenvalues of this 10 × 10

neutralino mass matrix correspond to the three light physical neutrinos and their masses

have to be very small in order to satisfy the experimental data on massive neutrinos. The

matrix Mn can be written in the following manner

Mn =

(

M7×7 mT
3×7

m3×7 03×3

)

, (4.3)

where

M7×7 =





















































M1 0 − g1√
2
v1

g1√
2
v2 0 0 0

0 M2
g2√
2
v1 − g2√

2
v2 0 0 0

− g1√
2
v1

g2√
2
v1 0 −µ −λev2 −λµv2 −λτv2

g1√
2
v2 − g2√

2
v2 −µ 0 ρe ρµ ρτ

0 0 −λev2 ρe 2uee
c 2ueµ

c 2ueτ
c

0 0 −λµv2 ρµ 2uµe
c 2uµµ

c 2uµτ
c

0 0 −λτv2 ρτ 2uτe
c 2uτµ

c 2uττ
c





















































, (4.4)

and

m3×7 =

















− g1√
2
νe

g2√
2
νe 0 re

c Y ee
ν v2 Y eµ

ν v2 Y eτ
ν v2

− g1√
2
νµ

g2√
2
νµ 0 rµ

c Y µe
ν v2 Y µµ

ν v2 Y µτ
ν v2

− g1√
2
ντ

g2√
2
ντ 0 rτ

c Y τe
ν v2 Y τµ

ν v2 Y ττ
ν v2

















. (4.5)

Note that the top-left 4 × 4 block of the matrix M7×7 is the usual neutralino mass

matrix of the MSSM. The bottom right 3× 3 block is the Majorana mass matrix of gauge

singlet neutrinos, which will be taken as diagonal in our subsequent analysis. The entries

of M7×7 are in general of the order of the electroweak scale and the entries of m3×7 are

much smaller (∼ O(10−5 GeV)). Hence, the matrix (4.3) has a seesaw structure that will

give rise to three very light eigenvalues corresponding to three light neutrinos. The correct

neutrino mass scale of ∼ 10−2 eV can easily be obtained with such a structure of the 10×10

neutralino mass matrix. In this work our focus would be to see if one can obtain the correct

mass-squared differences and the mixing pattern for the light neutrinos even if we consider

flavour diagonal neutrino Yukawa couplings in eq. (4.5) (i.e. with a diagonal Dirac neutrino

mass matrix). This makes the analysis simpler with a reduced number of parameters and

makes the model more predictive. As we will show later, it is possible to find out the

correct mixing pattern and the mass hierarchies (both normal and inverted) among the

light neutrinos in such a situation, at the tree level.
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In order to obtain the physical neutralino states, one needs to diagonalize the 10 × 10

matrix Mn. As in the case of MSSM, the symmetric mass matrix Mn can be diagonalized

with one unitary matrix N . The mass eigenstates are defined by

χ̃0
i = NijΨ

0
j , i, j = 1, . . . , 10, (4.6)

where the 10 × 10 unitary matrix N satisfies

N∗MnN−1 = M0
D, (4.7)

with the diagonal neutralino mass matrix denoted as M0
D. The matrix N may be chosen in

such a way that elements of M0
D are real and non-negative. In our analysis we will assume

that all the entries in the 10 × 10 neutralino mass matrix Mn are real. Seven eigenstates

of this matrix are heavy, i.e. of the order of the electroweak scale. Out of these seven

states, there are four states which are usually very similar to the MSSM neutralinos. The

remaining three states are mostly dominated by νc
i . It is, in general, very difficult to predict

the nature of the lightest of these seven states since that depends on several unknown

parameters. In our analysis of the decays of the lightest supersymmetric particle (LSP),

we will concentrate on three different possibilities : (i) lightest state is dominated by the

bino component, (ii) higgsino dominated lightest state, and (iii) gauge singlet neutrinos νc
i

form the lightest state. The last possibility is very interesting since in this case we have the

opportunity to produce the gauge singlet neutrinos at the LHC and study their properties

through the R-parity violating decay modes. This way one has a direct probe to the seesaw

scale at the LHC.

4.2 The charged fermions

In the charged fermion sector, the charged gauginos and charged higgsinos mix with the

charged leptons because of the presence of the effective bilinear RPV parameters ǫi ≡
∑

j Y ij
ν νc

j and the sneutrino VEVs νi. This is similar to the case of MSSM with bilinear

RPV with the parameter µ defined as µ =
∑

i λ
iνc

i . Since we want to calculate the decays of

the lightest neutralino, we also need to know the mass eigenvalues and the mixing matrices

in the charged fermion sector. Because of this reason, we discuss the chargino mass matrix

in some details. In the weak interaction basis defined by

Ψ+T = (−iλ̃+
2 , H̃+

2 , e+
R, µ+

R, τ+
R ),

Ψ−T = (−iλ̃−
2 , H̃−

1 , e−L , µ−
L , τ−

L ). (4.8)

The charged fermion mass term in the Lagrangian is of the form

Lmass
charged = −1

2

(

Ψ+T
Ψ−T

)







05×5 mT
5×5

m5×5 05×5













Ψ+

Ψ−






. (4.9)

Here we have included all three generations of charged leptons and assumed that the

charged lepton Yukawa couplings are in the diagonal form. Also, −iλ± are the two-

component charged Wino fields and H̃−
1 and H̃+

2 are the two-component charged higgsino
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fields. The matrix m5×5 is given by

m5×5 =

































M2 g2v2 0 0 0

g2v1 µ −Y ee
e νe −Y µµ

e νµ −Y ττ
e ντ

g2νe −re
c Y ee

e v1 0 0

g2νµ −rµ
c 0 Y µµ

e v1 0

g2ντ −rτ
c 0 0 Y ττ

e v1

































. (4.10)

The charged fermion masses are obtained by applying a bi-unitary transformation such

that

U∗m5×5V
−1 = M±

D, (4.11)

where U∗ and V are two unitary matrices and M±
D is the diagonal matrix with non-negative

entries corresponding to the physical fermion masses. The two-component mass eigenstates

are defined by

χ+
i = VijΨ

+
j ,

χ−
i = UijΨ

−
j , i, j = 1, . . . , 5. (4.12)

Nevertheless, we notice that the 13, 14, and 15 elements of the chargino mass matrix

(eq. (4.10)) are vanishing and given the orders of magnitude of various parameters, we also

see that the values of the other off-diagonal entries (except for 12 and 21 elements) are very

small. This indicates that the physical charged lepton eigenstates will have a very small

admixture of charged higgsino and charged gaugino states. So we can very well assume

(also verified numerically) that this mixing has very little effect on the mass eigenstates

of the charged leptons. Thus, while writing down the neutrino mixing matrix, it will be

justified to assume that one is working in the basis where the charged lepton mass matrix

is already in the diagonal form.

5 Neutrinos

5.1 Seesaw masses

When lepton-number violation is allowed, the effective light neutrino mass matrix arising

via the seesaw mechanism is in general given by

Mν = −m3×7M
−1
7×7m

T
3×7. (5.1)

As discussed in the previous section, m3×7 is the so-called Dirac neutrino mass matrix

and M7×7 is the matrix for the heavy states and contains ∆L = 2 mass terms for right chiral

neutrinos. In order to find out the neutrino mass-squared differences and mixing angles,

one must diagonalize the matrix Mν to find out the eigenvalues and the eigenvectors.
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Before discussing the detailed numerical results, let us try to understand the characteristic

features of this neutrino mass matrix analytically. Let us note that the neutrino mass-

squared differences indicate three possible scenarios for the light neutrino mass spectrum.

They are (i) Normal hierarchy corresponding to m1 ≈ m2 ∼
√

∆m2
21, m3 ∼

√

|∆m2
31|, (ii)

Inverted hierarchy: m1 ≈ m2 ∼
√

|∆m2
31|, m3 ≪

√

|∆m2
31| and (iii) Degenerate masses :

m1 ≈ m2 ≈ m3 ≫
√

|∆m2
31|, where m1, m2, and m3 are the three light neutrino mass

eigenvalues.

5.1.1 Analytical results

Let us make a few simplifications in order to diagonalize the effective light neutrino mass

matrix. One should note that the neutrino mass matrix involves the vacuum expecta-

tion values for the doublet and the gauge singlet sneutrinos. Hence we also make some

simplifying assumptions for the parameters appearing in the scalar sector. Some of these

assumptions have already been mentioned in the scalar sector but here we repeat them for

the convenience of the reader. We have defined

κijk = κ, if i = j = k, and zero otherwise,

(Aκκ)ijk = (Aκκ), if i = j = k, and zero otherwise,

Y ij
ν = 0, if i 6= j,

(AνYν)
ij = 0, if i 6= j,

λ1 = λ2 = λ3 = λ,

(Aλλ)1 = (Aλλ)2 = (Aλλ)3 = (Aλλ),

(m2
L̃
)ij = (m2

L̃
)δij ,

(m2
ν̃c)ij = (m2

ν̃c)δij , (5.2)

where i, j, k = e, µ, τ in the flavour basis.

With these assumptions one can solve for νc
i from the minimization equations for the

gauge singlet sneutrinos (eq. (2.5)) and the result is νc
1 = νc

2 = νc
3 = νc. This can be

understood if we neglect the terms proportional to Yν
2, Yνν, (AνYν)ν in the minimization

equations and assume that λ, κ are ∼ O(1) couplings.

Now let us look at the effective left chiral neutrino mass matrix (eq. (5.1)) in a little

more details. Because of the smallness of Yν and νi, one can neglect terms containing

Yν
2ν2 and Yν

3ν. This way one obtains an approximate analytical expression for the 3 × 3

neutrino mass matrix.

Mν =
2

3

Aνc

∆















b2
e bebµ bebτ

bebµ b2
µ bµbτ

bebτ bµbτ b2
τ















+
1

6κνc















−2a2
e aeaµ aeaτ

aeaµ −2a2
µ aµaτ

aeaτ aµaτ −2a2
τ














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− 2λµ

3∆

∑

i

Y ii
ν νi

(

v2 −
2λAB

∆

)















c2
e cecµ cecτ

cecµ c2
µ cµcτ

cecτ cµcτ c2
τ















,

(5.3)

where

∆ = λ2(v2
1 + v2

2)
2 + 4λκνc2v1v2 − 4MλAµ, µ = 3λνc,

A = (κνc2 + λv1v2),

1

M
=

g2
1

M1
+

g2
2

M2
, (5.4)

B = v1(v
2
1 + v2

2) − 2Mµv2,

ai = Y ii
ν v2, bi = (Y ii

ν v1 + 3λνi), ci = νi,

with i, j, k = e, µ, τ .

One can rewrite eq. (5.3) in a compact form as follows

Mν
ij =

2Aνc

3∆
bibj +

1

6κνc
aiaj(1 − 3δij) −

2λµ

3∆

∑

k

Y kk
ν νk

(

v2 −
2λAB

∆

)

cicj . (5.5)

Let us note that the smallness of the left chiral sneutrino VEVs (νi ≪ v1, v2) allows

us to use m2
Z ≈ 1

2(g2
1 + g2

2)(v
2
1 + v2

2) and tan β ≈ v2

v1
.

The coefficients of the first term in eq. (5.3) (or in eq. (5.5)) is of the order of 1
m̃ whereas

the coefficient of the second term is . 1
10m̃ , where m̃ is the electroweak (or supersymmetry

breaking) scale and we have assumed that the relevant mass scales are at m̃ and κ is an

order one coupling. The value of the coupling λ (determines the value of the µ parameter),

which satisfies the neutrino data as well as the constraints in the scalar sector, is taken to

be of the order of 10−1. On the other hand, the coefficient of the third term is ∼ 1
m̃( νi

m̃).

Since νi

m̃ ∼ 10−6–10−7, there is an extra suppression factor in the elements of third term

in eq. (5.3), compared to the first two terms. In addition, b2
i ∼ a2

i ∼ c2
i with a slightly

larger value of a2
i and c2

i compared to b2
i in most cases. Hence, one can neglect the third

term of eq. (5.3) in comparison to the first two terms. However, in our numerical analysis

(discussed later) we have kept all the terms in eq. (5.3) and checked that the presence of

the third term changes the result in an insignificant manner.

Before going on to find out the expressions for the eigenvalues and the eigenvectors of

the effective neutrino mass matrix (eq. (5.3)), let us highlight a few limiting cases which

give us some insight regarding the behaviour of the neutrino mass matrix. Neglecting the

third term one can rewrite eq. (5.5) in the following manner

Mν
ij ≈

v2
2

6κνc
Y ii

ν Y jj
ν (1 − 3δij) − 1

2M

[

νiνj +
v1ν

c(Y ii
ν νj + Y jj

ν νi)

µ
+

Y ii
ν Y jj

ν v2
1ν

c2

µ2

]

×
[

1 − v2

2MAµ

(

κνc2 sin 2β +
λv2

2

)]−1

. (5.6)
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Here we have used v2 = v sinβ, v1 = v cos β, and µ = 3λνc.

In the limit νc → ∞ and v → 0, eq. (5.6) reduces to

Mν
ij ≈ −νiνj

2M
, (5.7)

which is the first part of the second term of eq. (5.6). In this case the elements of the

neutrino mass matrix are bilinears in the left-handed sneutrino VEVs and they appear

due to a seesaw effect involving the gauginos. This is called the “gaugino seesaw” effect

and neutrino mass generation through this effect is a characteristic feature of the bilinear

R−parity violating model. This effect is present in this model because we have seen earlier

that the effective bilinear R-parity violating terms are generated in the scalar potential as

well as in the superpotential through the vacuum expectation values of the gauge singlet

sneutrinos. Note that the gaugino seesaw effect can generate mass for only one doublet

neutrino.

In the limit M → ∞, eq. (5.6) reduces to

Mν
ij ≈

v2
2

6κνc
Y ii

ν Y jj
ν (1 − 3δij), (5.8)

which corresponds to the ordinary seesaw effect between the left handed and gauge singlet

neutrinos. Remember that the effective Majorana masses for the gauge singlet neutrinos are

given by MR = 2κνc. The ordinary seesaw effect can generate, in general, masses for all the

three neutrinos. Thus depending on the magnitudes and the hierarchies of various diagonal

neutrino Yukawa couplings Y ii
ν , one can generate normal or inverted hierarchy of neutrino

masses (combining with the “gaugino seesaw” effect) corresponding to atmospheric and

solar mass squared differences, as discussed earlier. In this model it is difficult to obtain

a degenerate neutrino spectrum and we do not consider this possibility in our subsequent

analysis.

Now let us try to find out the approximate analytical expressions for the eigenvalues

and eigenvectors of the effective light neutrino mass matrix using perturbation theory.

Neglecting the third term in eq. (5.3), the neutrino mass matrix looks like

Mν = B















b2
e bebµ bebτ

bebµ b2
µ bµbτ

bebτ bµbτ b2
τ















+ A















−2a2
e aeaµ aeaτ

aeaµ −2a2
µ aµaτ

aeaτ aµaτ −2a2
τ















, (5.9)

where A = 1
6κνc and B = 2

3
Aνc

∆ . As we have argued above, the first matrix in eq. (5.9) can

be considered as the unperturbed one and the second matrix can be treated as a perturba-

tion over the first one because of the presence of the smaller coefficient A. The eigenvalues

of the unperturbed matrix are (0, 0,B(b2
e + b2

µ + b2
τ )) and the corresponding eigenvectors

are
(

− bτ

be
0 1
)T

,
(

− bµ

be
1 0
)T

,
(

be

bτ

bµ

bτ
1
)T

. With the order of magnitudes of various

parameters discussed above, the only non-zero eigenvalue determines the atmospheric neu-

trino mass scale corresponding to the normal hierarchical mass pattern for neutrinos. In
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order to generate the solar neutrino mass scale one must turn on the perturbation. In this

case one should use the unperturbed eigenvectors to get the corrections to the eigenvalues

due to perturbation. However, since two of the eigenvalues are zero, one needs to apply

the degenerate perturbation theory to evaluate the correction to the eigenvalues. To do

this, first we construct a complete set of orthonormal eigenvectors using Gram-Schmidt

orthogonalization procedure. The set of orthonormal eigenvectors obtained in this case are

y1 =
be

√

b2
e + b2

τ







− bτ

be

0

1






,

y2 =

√

b2
e + b2

τ

Ωb







− bebµ

b2e+b2τ

1

− bµbτ

b2e+b2τ






,

y3 =
bτ

Ωb







be

bτ
bµ

bτ

1






, (5.10)

where

Ωb =
√

b2
e + b2

µ + b2
τ . (5.11)

Using degenerate perturbation theory for this set of orthonormal eigenvectors, the

modified eigenvalues m′
± and m′

3 are obtained as

m′
± = − A

Ω2
b

{

Πab ±
√

[

−3Ω2
b(Σab)

2 + (Πab)
2
]

}

,

m′
3 = BΩ2

b −
2A
Ω2

b

{

(

∑

i

aibi

)2
− 3Λab

}

, (5.12)

where

Λab =
∑

i<j

aiajbibj,

Πab =
∑

i<j

(aibj + ajbi)
2 − Λab,

Σab =
∑

i6=j 6=k

aiajbk. (5.13)

As one can see from eq. (5.12), the corrections to the eigenvalues are proportional to

the coefficient A appearing in eq. (5.9). This is the effect of the ordinary seesaw. Let

us note in passing that this effect is absent if only one generation of left chiral neutrino

is considered, whereas for two and three generations of left chiral neutrino the ordinary

seesaw effect exists. This can be understood from the most general calculation involving

n-generations of left chiral neutrinos, where the coefficients of A pick up an extra factor

(n − 1).
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mν (eV) (×103) ∆m2
21(eV

2) ∆m2
31(eV

2)

m1 m2 m3 (×105) (×103)

eq. (5.1) 9.970 4.169 48.23 8.203 2.307

eq. (5.12) 9.468 4.168 47.71 7.228 2.187

Table 1. Absolute values of the neutrino masses and the mass-squared differences for a sample point

of the parameter space discussed in the text. Results for full numerical analysis have been obtained

using eq. (5.1). Approximate analytical expressions of eq. (5.12) have been used for comparison.

5.1.2 Numerical results

In order to get some idea about the numbers of the mass eigenvalues and to make com-

parisons between the full numerical results and the results using approximate analytical

expression, we look at a sample point in the parameter space. As mentioned earlier, we are

considering only the normal hierarchical pattern of neutrino masses. The set of parameters

are M1 = 325 GeV, M2 = 650 GeV, λ = 0.06, κ = 0.65, Aλλ(− Aκκ) = −1TeV×λ(κ) and

tan β = 10.

The choices of diagonal neutrino Yukawa couplings (Y ii
ν ) and corresponding soft param-

eters (AνYν)
ii are very crucial and we take, for this particular calculation, Y ee

ν = 4.57×10−7,

Y µµ
ν = 6.37 × 10−7, Y ττ

ν = 1.80 × 10−7, (AνYν)
ee = 1.57 × 10−4 GeV, (AνYν)

µµ =

4.70 × 10−4 GeV, (AνYν)
ττ = 3.95 × 10−4 GeV. Soft masses of left handed and right

handed sleptons are chosen to be 400 GeV and 300 GeV, respectively. Later on we will

show the allowed regions in the Yν planes which satisfy the experimental data on neu-

trino masses and mixing. For these choices of various parameters, the derived left-handed

sneutrino VEVs are νe ∼ 10−5 GeV, νµ = 1.515 × 10−4 GeV, ντ = 2.133 × 10−4 GeV and

right-handed sneutrino VEVs are νc = −588.74 GeV. With this set of values the masses

of three neutrinos have been found out by direct diagonalization of the matrix obtained

using (5.1), and also from the approximate analytical expression using (5.12). It has been

observed that even with several simple assumptions (eq. (5.2)), all three generations of

left chiral neutrinos acquire non-vanishing, non-degenerate masses at the tree-level. The

comparison of the results as obtained from (5.1) and from (5.12) are given in table 1. One

can see that these values are within the 3σ limits shown in eqs. (1.1)–(1.2). However, it

should be mentioned that if λ, κ are much less than ∼ O(1) and Yνs are much larger

than the ones we have considered above, the approximate analytical expression does not

produce the correct results for the eigenvalues and the eigenvectors. Obviously, when the

neutrino Yukawa couplings are larger one cannot consider the second term in eq. (5.3) as a

perturbation to the first term. In our numerical analysis for obtaining the allowed region

of parameter space which satisfy the neutrino data, we have done a full numerical analysis

without using the approximate formula.

The numerical values of the solar and atmospheric mass squared differences ∆m2
21

and ∆m2
31 have also been shown in table 1 and the results show good agreement. The

numerical calculations have been performed with the help of a code developed by us using

Mathematica [18]. In our numerical calculations, we have taken for (i) normal hierarchy:

m2|max < 1.0 × 10−11 GeV and (ii) inverted hierarchy: m3|max < 1.0 × 10−11 GeV.
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5.2 Neutrino mixing

The left chiral light neutrinos form a 3 × 3 mass matrix in the flavour basis. The unitary

matrix which diagonalizes this mass matrix can be parameterized as follows [19], provided

that the charged lepton mass matrix is already in the diagonal form

Uν =















c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s23c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23s13e

−iδ c23c13















, (5.14)

where cij = cos θij, sij = sin θij, and i, j runs from 1 to 3. Various neutrino oscillation

experiments indicate that θ12 ≈ 34◦, θ23 ≈ 45◦, and θ13 ≤ 13◦ [20, 21]. This pattern is

known as bilarge mixing. In order to understand the consequences of such mixing in the

zeroth order, one can approximately take θ23 = 45◦, sin θ12 = 1√
3

and θ13 ≈ 0◦, something

known as tribimaximal structure [22]. Then the unitary matrix turns out to be

Uν
3×3 =

















√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2

















. (5.15)

Given the three mass eigenvalues m1,m2,m3, it is possible to use the matrix Uν to obtain

the mass matrix in the flavour basis as follows,

Uν−1

MνUν = Mν
diag, (5.16)

where

Mν
diag =















m1 0 0

0 m2 0

0 0 m3















. (5.17)

We will numerically diagonalize the neutrino mass matrix Mν obtained in eq. (5.1) and

also use the approximate analytical method to find out the neutrino mixing matrix Uν . We

will also compare the results obtained using these two methods. However, when we will

scan the parameter space to find out the allowed regions where the neutrino experimental

data are satisfied, we shall use the full numerical procedure. The advantage of having

the approximate analytical expression is that it can give us some insight regarding the

conditions on the model parameters for which the bilarge mixing is obtained. We can

verify these predictions numerically in some regions of the parameter space. We will try

to find out the regions in the models parameters where the numbers in eqs. (1.1)–(1.3) are

reproduced.

– 19 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
9

5.2.1 Analytical results

One can construct the neutrino mixing matrix analytically using the degenerate perturba-

tion theory. With the set of orthonormal eigenvectors in eq. (5.10) and the eigenvalues in

eq. (5.12), it is possible to write down the eigenvectors of (5.9) in the following form

(Y1)3×1 = α1y1 + α2y2, (5.18)

(Y2)3×1 = α′
1y1 + α′

2y2, (5.19)

(Y3)3×1 = y3, (5.20)

where α1, α2, α′
1, α′

2, are calculated using degenerate perturbation theory and their ana-

lytical expressions are given by

α1 = ±





h12
√

h2
12 + (h11 − m′

+)2



 , (5.21)

α2 = ∓





h11 − m′
+

√

h2
12 + (h11 − m′

+)2



 , (5.22)

α′
1 = ±





h12
√

h2
12 + (h11 − m′

−)2



 , (5.23)

α′
2 = ∓





h11 − m′
−

√

h2
12 + (h11 − m′

−)2



 . (5.24)

Here m′
+, m′

− are given by eq. (5.12) and h11, h12 are given by

h11 = −2A
(

a2
τb

2
e + aeaτbebτ + a2

eb
2
τ

)

b2
+

, (5.25)

and

h12 =
A
[

aµ(aτ be − aebτ )b
2
+ − bµ

(

2bebτa2
− + aeaτb

2
−
)]

Ωbb
2
+

, (5.26)

where

b2
± = (b2

e ± b2
τ ),

a2
− = (a2

e − a2
τ ), (5.27)

and Ωb has been defined in eq. (5.11).

The neutrino mixing matrix Uν can be constructed using these eigenvectors in eqs.

(5.18)–(5.20) and it looks like

Uν =
(

Y1 Y2 Y3

)

3×3
. (5.28)
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mixing angles in degree Using (5.1) Using (5.28)

θ12 36.438 37.287

θ13 9.424 6.428

θ23 38.217 42.675

Table 2. Neutrino mixing angles for a sample parameter point discussed in table 1. Results are

shown using eq. (5.1) and eq. (5.28).

Looking at the expressions for the eigenvectors, one can immediately draw a few conclusions

regarding the behaviours of the neutrino mixing angles with the model parameters. For

example, the (13) mixing angle θ13 is given by

sin2 θ13 =
b2
e

b2
e + b2

µ + b2
τ

. (5.29)

If we want the (13) mixing angle to be small then one must have b2
e ≪ (b2

µ + b2
τ ). On the

other hand, the (23) mixing angle θ23 is given by

sin2 θ23 =
b2
µ

b2
µ + b2

τ

. (5.30)

So, if the (23) mixing is maximal then one would expect b2
µ = b2

τ . The solar mixing angle

θ12 is approximately given by

sin2 θ12 ≈ 1 −
(

α′
1 + α′

2

be

bτ

)2

, (5.31)

where α′
1 and α′

2 are given by eqs. (5.23) and (5.24), respectively. In order to have θ12 ∼
35◦, the square root of the second term on the right hand side of eq. (5.31) should be

approximately 0.8. In the next sub-section we discuss the patterns of neutrino mixing in

this model numerically, and show the allowed regions of the parameter space where the

neutrino experimental data are satisfied.

5.2.2 Numerical results

Let us first calculate the neutrino mixing angles for the parameter point discussed in

table 1. As we have discussed earlier, this parameter point generates the normal hierarchical

pattern of neutrino masses. In table 2, the three mixing angles are shown and they have

been evaluated using the direct numerical calculation in eq. (5.1) as well as using the

approximate analytical expressions in eq. (5.28). We want to emphasize once again that

the approximate formulae have been used just to get some idea about the behaviours of

the neutrino masses and mixing angles with various model parameters. This way we can

identify the relevant parameters which crucially control the neutrino masses and mixing

angles in different regions of the parameter space. However, these formulae are not valid

everywhere in the allowed parameter space and in all the plots shown in this paper we have

used full numerical calculation using eq. (5.1).
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bµ
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n2 θ 23
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LN HIGGSINO DOMINATED

Figure 2. Scatter plot of the neutrino mixing angle sin2 θ23 as a function of the ratio
b2µ
b2τ

. Values of

other parameters are described in the text. The lightest neutralino (LN) is either bino or higgsino

dominated.

We have taken suitable values for λ and κ in such a way that they fall in the region

allowed by the constraints in the scalar sector (similar to the region shown in figure 1). We

can see that for this choice of the parameter space, numerical and approximate analytical

results give quite good agreement. Naturally, one would be interested to check the predic-

tions made in eqs. (5.29), (5.30), and (5.31) over a wide region in the parameter space and

see the deviations from the full numerical calculations. This has been shown in figure 2,

where we have plotted the value of sin2 θ23 as a function of the ratio b2
µ/b2

τ .

We can see from this figure that for b2
µ = b2

τ , the value of sin2 θ23 varies in the range

0.41–0.44, which corresponds to θ23 between 40◦ and 42◦. On the other hand, eq. (5.30)

tells that for b2
µ = b2

τ , sin2 θ23 = 0.5. So we see that in this case the result from the numerical

calculation is reasonably close to the prediction from the approximate analytical formula.

The choices for various parameters are given below. For the gaugino mass parameters M1

and M2, we take two different sets of values which give us either a bino dominated lightest

neutralino or a higgsino dominated lightest neutralino. In order to have a bino dominated

lightest neutralino, our choices are M1 = 110 GeV,M2 = 220 GeV, and for a higgsino

dominated lightest neutralino we take M1 = 325 GeV,M2 = 650 GeV. The same choices

will be made for the gaugino mass parameters when we discuss the decays of the lightest

neutralino in section VI. Our choice of the ratio of the gaugino mass parameters at the

electroweak scale is motivated by the assumption of universal gaugino mass at the grand

unified theory scale. The value of κ is taken as 0.65 which satisfies the constraints from

the scalar sector. We have taken two different values of λ corresponding to a bino or a

higgsino dominated lightest neutralino. For the bino dominated case λ = 0.13, and for the

higgsino dominated case λ = 0.06. The corresponding values for Aλλ = −λ × 1TeV and

Aκκ = κ × 1TeV. The three diagonal neutrino Yukawa couplings (Y ii
ν ) vary randomly in

different ranges

3.55 × 10−7 ≤ Y 11
ν ≤ 5.45 × 10−7

5.55 × 10−7 ≤ Y 22
ν ≤ 6.65 × 10−7

1.45 × 10−7 ≤ Y 33
ν ≤ 3.35 × 10−7. (5.32)
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0.55 0.60 0.65 0.70 0.75
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Figure 3. sin2 θ13 as a function of the ratio
b2e

b2µ+b2τ
. Values of other parameters are the

same as in figure 2.

Figure 4. sin2 θ12 as a function of (α′

1 +

α′

2
be

bτ
)2. One can see that as (α′

1 + α′

2
be

bτ
)2 →

0.50, sin2 θ12 tends to 0.50, as predicted by

the analytical formula. Values of other pa-

rameters are the same as in figure 2.

The corresponding soft parameters (Aii
ν ) also vary randomly in different ranges such that

the parameters (AνYν)
ii effectively vary as follows

1.25 × 10−4 ≤ (AνYν)
11 ≤ 1.95 × 10−4

3.45 × 10−4 ≤ (AνYν)
22 ≤ 4.95 × 10−4

2.35 × 10−4 ≤ (AνYν)
33 ≤ 4.20 × 10−4. (5.33)

The allowed regions in the λ − κ plane are not very sensitive to the values of Yν and

AνYν due to their smallness. Hence we choose them different for different cases, in order

to accommodate the three flavour global neutrino data.

Note that in some parts of these ranges we have considered a bino dominated lightest

neutralino and in some parts we have taken a higgsino dominated lightest neutralino with

some overlapping regions. The values of other parameters are chosen to be mL̃ = 400 GeV,

mν̃c = 300 GeV and tan β = 10. We have assumed that the phase δ appearing in the

mixing matrix (5.14) is zero. One important thing to notice is that even with a flavour

diagonal structure of the neutrino Yukawa couplings Yν , one can obtain the required two

large mixing angles for the neutrinos. The variations of other two mixing angles with the

relevant parameters are shown in figures 3 and 4.

In figure 5, we have shown the regions in the various Yν planes satisfying the three

flavour global neutrino data. The values of other parameters are as in figure 2 for the case

where the lightest neutralino is bino dominated. We can see from these figures that the

allowed values of Yνs show a mild hierarchy such that Y 22
ν > Y 11

ν > Y 33
ν .

Similar studies have been performed for the inverted hierarchical case and the allowed

region shows that the magnitudes of the neutrino Yukawa couplings are larger compared

to the case of normal hierarchical scheme of the neutrino masses with a different hierarchy

among the Yνs themselves (Y 11
ν > Y 22

ν > Y 33
ν ). In this case sin2 θ12 shows an increasing

behaviour with the ratio b2
e/b

2
µ, similar to the one shown by sin2 θ23 with b2

µ/b2
τ in the normal
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Figure 5. Plots for normal hierarchical scheme of neutrino mass in Y 11
ν − Y 22

ν , Y 11
ν − Y 33

ν and

Y 22
ν − Y 33

ν plane when the lightest neutralino (LN) is bino dominated.

hierarchical scenario. On the other hand, sin2 θ23 shows a decreasing behaviour with b2
µ/b2

τ .

In all these cases, the solar and atmospheric mass-squared differences are within the 3σ

limits.

The case of νc dominated lightest neutralino has also been studied and it shows a very

interesting and different behaviour compared to the bino and higgsino dominated cases. In

this case, the dominant contribution in the neutrino mass matrix (eq. (5.5)) comes from

the term proportional to aiaj. The terms proportional to bibj should be considered as a

perturbation. Hence, in the normal hierarchical scenario of neutrino masses, one would

expect that sin2 θ23 is proportional to a2
µ/a2

τ . This is exactly what we see in figure 6.

Note that for a2
µ = a2

τ , the mixing becomes maximal. On the other hand, the solar

mixing angle is controlled mostly by the quantity b2
e/b

2
µ and shows an increasing behaviour

with this ratio. In the case of inverted hierarchical scenario of neutrino masses, sin2 θ23

shows a decreasing behaviour with the ratio b2
µ/b2

τ whereas sin2 θ12 shows an increasing

pattern with b2
e/b

2
µ. However, we do not show these plots here.
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Figure 6. Scatter plot of the neutrino mixing angle sin2 θ23 as a function of the ratio
a2

µ

a2
τ

. Values

of other parameters are described in the text. The lightest neutralino (LN) is νc dominated.

6 Decays of the lightest neutralino

Let us now look at some decay processes which can be considered as the typical consequence

of this model. It is obvious that because of the R-parity violation there will be no stable

lightest supersymmetric particle (LSP) present in this model. Here we consider the case

where the lightest neutralino (χ̃0
7 in our notation to be described below) is the LSP (or

NLSP in some cases) and study its decay pattern in the R-parity violating channels. In

particular, we will consider the case where mχ̃0
7

> mW± , so that the three-body decays

are less important compared to the two-body decays χ̃0
7 → Z + νe,µ,τ , χ̃0

7 → W± + e∓,

χ̃0
7 → W± + µ∓, and χ̃0

7 → W± + τ∓. The required Feynman rules for the computation

of the decay of the lightest neutralino are given in the appendix B. Let us also remark

that the lightest neutralino LSP can also decay to h + ν, if it is kinematically allowed,

where h is the MSSM-like lightest Higgs boson. However, for our illustration purposes

we have considered the mass of the lightest neutralino in such a way that this decay is

either kinematically forbidden or very much suppressed (assuming a lower bound on the

mass of h to be 114 GeV). Even if this decay branching ratio is slightly larger, it is usually

smaller than the branching ratios in the (ℓi + W ) channel. Hence, this will not affect our

conclusions regarding the ratios of branching ratios in the charged lepton channel (ℓi +W ),

to be discussed later. The lightest neutralino decay χ̃0
7 → ν + ν̃c, where ν̃c is the scalar

partner of the gauge singlet neutrino νc, is always very suppressed. We will discuss more

on this when we consider a νc dominated lightest neutralino.

Consider the following decay process

χ̃i −→ χ̃j + V, (6.1)

where χ̃i(j) is either a neutralino or chargino, with mass mi(j) and V is the gauge boson

which is either W± or Z, with mass mv. The masses mi and mj are positive.

The decay width for this process in eq. (6.1) is given by [23, 24]

Γ (χ̃i −→ χ̃j + V ) =
g2K1/2

32 πm3
i m

2
W

×
{(

G2
L + G2

R

)

F − G∗
LGR G

}

,
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where F , G are functions of mi,mj ,mv and given by

F(mi,mj ,mv) = K + 3 m2
v

(

m2
i + m2

j − m2
v

)

,

G(mi,mj ,mv) = 12 ǫiǫjmimjm
2
v, (6.2)

with ǫi(j) carrying the actual signs (±1) of the neutralino masses. The chargino masses

must be positive. The kinematical factor K is given by

K(m2
i ,m

2
j ,m

2
v) =

(

m2
i + m2

j − m2
v

)2 − 4 m2
i m

2
j . (6.3)

In order to derive eq. (6.2), we have used the relation m2
W = m2

Z cos2 θW and since

〈ν̃i〉 ≪ v1, v2, some of the MSSM relations still hold good. The factors GL, GR are given

here for some possible decay modes

For χ̃0
i −→ χ̃0

jZ

GL = O′′L
ji , GR = O′′R

ji ,

For χ̃0
i −→ χ̃+

j W−

GL = OL
ij , GR = OR

ij , (6.4)

where O
L(R)
ij and O

′′L(R)
ji are given by eq. (B.5) and eq. (B.8).

Now consider the following decays

χ̃0
LN −→ Z + ν,

χ̃0
LN −→ W± + ℓ∓, (6.5)

where χ̃0
LN stands for lightest neutralino and ℓ = e, µ, τ . At this stage let us discuss our

notation and convention for these decays. The neutralino mass matrix is a 10×10 mass

matrix which includes the left handed as well as the gauge-singlet neutrinos. If the mass

eigenvalues of this matrix are arranged in the descending order then the three lightest

eigenvalues of this 10×10 neutralino mass matrix would correspond to the three light

neutrinos. Out of the remaining seven heavy eigenvalues, the lightest one is denoted as

the lightest neutralino. Thus, in our notation χ̃0
7 is the lightest neutralino and χ̃0

j+7,where

j = 1, 2, 3 correspond to the three light neutrinos. Similarly, for the chargino masses, χ̃±
l+2

(l = 1, 2, 3) corresponds to the charged leptons e, µ, τ .

So for χ̃0
LN → Z +ν, which is also χ̃0

7 → Z + χ̃0
j+7 (j = 1, 2, 3), one gets from eq. (6.4)

and eq. (B.5)

GL = −1

2
Nj+7,3N

∗
73 +

1

2
Nj+7,4N

∗
74 −

1

2
Nj+7,k+7N

∗
7,k+7,

GR = −G∗
L, (6.6)

where j, k = 1, 2, 3 and this in turn modifies eq. (6.2) as

Γ
(

χ̃0
7 → Z + χ̃0

j+7

)

=
g2K1/2

32 πm3
χ̃0

7

m2
W

×
{

2 G2
LF + G∗2

L G
}

, (6.7)
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with mi = mχ̃0
7
, mj = mν ≈ 0 and mv = mZ .

Let us now consider the other decay which is χ̃0
LN → W± + ℓ∓ or equivalently χ̃0

7 →
W± + χ̃∓

j (j = 3, 4, 5).

For the process χ̃0
7 → W− + χ̃+

j

Γ
(

χ̃0
7 → W− + χ̃+

j

)

=
g2K1/2

32 πm3
χ̃0

7

m2
W

×
{(

G2
L + G2

R

)

F − G∗
LGR G

}

,

GL = N72V
∗
j1 −

1√
2
N74V

∗
j2,

GR = N∗
72Uj1 +

1√
2
N∗

73Uj2 +
1√
2
N∗

7,k+7Uj,k+2,

(k = 1, 2, 3), (6.8)

where eq. (6.4) and eq. (B.8) has been used. The process χ̃0
7 −→ W+ + χ̃−

j is obtained by

charge conjugation of the process in eq. (6.8).

6.1 Correlation between the lightest neutralino decays and neutrino mixing

angles

Correlations between the lightest neutralino decays and neutrino mixing angles will depend

on the nature of the lightest neutralino as well as on the mass hierarchies of the neutrinos,

i.e. whether we have a normal hierarchical pattern of neutrino masses or an inverted one. In

this section we look into these possibilities in details and consider three different cases for

the dominant component of the lightest neutralino. We consider that the lightest neutralino

is (1) bino dominated, (2) higgsino dominated, and (3) νc dominated. For each of these

cases we consider both the normal and the inverted hierarchical pattern of neutrino masses.

We show that in these different cases, the ratio of branching ratios of certain decays of the

lightest neutralino correlates with the neutrino mixing angles. In some cases the correlation

is with the atmospheric and the reactor angle and in other cases the ratio of the branching

ratios correlates with the solar mixing angle and in some cases there is no correlations at all.

Let us now study these possibilities case by case. The interesting difference between this

study and similar studies with bilinear R-parity violating scenario [25] in the MSSM is the

presence of a gauge singlet neutrino dominated lightest neutralino. We will see later that

in this case the results can be very different from the bino or higgsino dominated lightest

neutralino. The lightest neutralino decays in neutrino mass models with spontaneous R-

parity violation have been studied in ref. [26].

6.1.1 Bino dominated lightest neutralino

We will assume that the gaugino masses are unified at the grand unified theory (GUT)

scale. At the EW scale the ratio of the U(1) and SU(2) gaugino masses are M1/M2 = 1 : 2.

If in addition, M1 < µ and the value of κ is large (so that the effective gauge singlet

neutrino mass 2κνc is large), the lightest neutralino is essentially bino dominated and it is

the LSP. First we consider the case when the composition of the lightest neutralino is such

that, the bino-component |N71|2 > 0.92 and neutrino masses follow the normal hierarchical
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Figure 7. Ratio
Br(χ0

7
−→ℓi W )

Br(χ0

7
−→ℓj W )

versus
b2i
b2

j

plot for a bino like lightest neutralino (the LSP) with bino

component, |N71|2 > 0.92, where i, j, k = e, µ, τ . Neutrino mass pattern is taken to be normal hi-

erarchical. Choice of parameters are M1 = 110GeV, λ = 0.13, κ = 0.65, mν̃c = 300 GeV and mL̃ =

400 GeV. Mass of the LSP is 106.9GeV. The value of the µ parameter comes out to be -228.9GeV.

pattern. We have observed that for the bino dominated case, the lightest neutralino (χ̃0
7)

couplings to ℓ±–W∓ pair (where ℓ = e, µ or τ) depend on the quantities bi along with a

factor which is independent of various lepton generations. Naturally, we would expect that

the ratios of various decay branching ratios such as BR(χ̃0
7 → e + W ), BR(χ̃0

7 → µ + W ),

and BR(χ̃0
7 → τ +W ) show nice correlations with the quantities b2

i /b
2
j with i,j being e, µ or

τ . This feature is evident from figure 7. Here we have scanned the parameter space of the

three neutrino Yukawa couplings with random values for a particular choice of the couplings

λ, κ and the associated soft SUSY breaking trilinear parameters, as well as other MSSM

parameters. The trilinear soft parameters Aν corresponding to Yνs also vary randomly in

a certain range. In addition we have imposed the condition that the lightest neutralino

(which is the LSP) is bino dominated and neutrino mass pattern is normal hierarchical.

We have checked that the correlations between the ratios of the lightest neutralino

decay branching ratios and b2
i /b

2
j is more prominent with increasing bino component of

the lightest neutralino. Note that when (bi/bj)
2 → 1 the ratios of branching ratios shown

in figure 7 also tend to 1. We have seen earlier that the neutrino mixing angles θ23 and

θ13 also show nice correlation with the ratios b2
µ/b2

τ and b2
e/b

2
τ , respectively (see figures 2
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Figure 8. Ratio
Br(χ0

7
−→µ W )

Br(χ0

7
−→τ W )

versus tan2 θ23 (left),
Br(χ0

7
−→e W )√

Br(χ0

7
−→µ W )2+Br(χ0

7
−→τ W )2

with

tan2 θ13 (right) plot for a bino dominated lightest neutralino (the LSP) with bino component,

|N71|2 > 0.92. Neutrino mass pattern is normal hierarchical. Choice of parameters are same as

that of figure 7.

and 3). Hence we would expect that the ratios of the branching ratios
BR(χ̃0

7
→µW )

BR(χ̃0
7
→τW )

and

BR(χ̃0
7
−→e W )√

BR(χ̃0
7
−→µ W )2+BR(χ̃0

7
−→τ W )2

show correlations with tan2 θ23 and tan2 θ13. These corre-

lations are shown in figure 8. We have seen earlier (see eq. (5.12)) that with the normal

hierarchical pattern of the neutrino masses, the atmospheric mass scale is determined by

the quantity Ωb =
√

b2
e + b2

µ + b2
τ . Naturally one would expect that the atmospheric and

the reactor angles are correlated with the ℓ + W final states of the lightest neutralino

decays and no correlation is expected for the solar angle. This is what we have observed

numerically. Here we have considered the regions of the parameter space where the neu-

trino mass-squared differences and mixing angles are within the 3σ allowed range shown in

eqs. (1.1)–(1.3). Figure 8 also shows the model prediction for the ratios of branching ratios

where the neutrino experimental data are satisfied. For our sample choice of parameters in

figure 8, one would expect that the ratio
BR(χ̃0

7−→µ W )

BR(χ̃0
7
−→τ W )

should be in the range 0.45 to 1.25.

Similarly, the other ratio
BR(χ̃0

7
−→e W )√

BR(χ̃0
7
−→µ W )2+BR(χ̃0

7
−→τ W )2

is expected in this case to be less

than 0.07. We can also see from figure 8 that the ratio of branching ratios in the (µ + W )

and (τ + W ) channels becomes almost equal for the maximal value of the atmospheric

mixing angle (θ23 = 45◦). On the other hand, we do not observe any correlation with the

solar mixing angle θ12 since it is a complicated function of a2
i and b2

i (see eq. (5.31)).

In the case of inverted hierarchical mass pattern of the light neutrinos, the χ̃0
7–ℓi–W

coupling is still controlled by the quantities b2
i . Hence the ratios of the branching ratios

discussed earlier, show nice correlations with b2
i /b

2
j (see figure 9). However, in this case the

solar mixing angle shows some correlation with the ratio
BR(χ̃0

7
−→e W )√

BR(χ̃0
7
−→µ W )2+BR(χ̃0

7
−→τ W )2

.

This is shown in figure 10. The correlation is not very sharp and some dispersion occurs

due to the fact that the two heavier neutrino masses controlling the atmospheric mass scale

and solar mass-squared difference are not completely determined by the quantities b2
i and

there is some contribution of the quantities a2
i , particularly for the second heavy neutrino

mass eigenstate.
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Figure 9. Ratio
BR(χ̃0

7
−→ℓ

−

i
W )

BR(χ̃0

7
−→ℓ

−

j
W )

versus
b2i
b2

j

plot for a bino like lightest neutralino (the LSP) with bino

component |N71|2 > 0.95, where i, j, k = e, µ, τ . Neutrino mass pattern is inverted hierarchical.

Choice of parameters are M1 = 105GeV, λ = 0.15, κ = 0.65, mν̃c = 300 GeV and mL̃ = 445 GeV.

Mass of the LSP is 103.3GeV. The value of the µ parameter comes out to be -263.7GeV.
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Figure 10. Ratio
BR(χ̃0

7
−→e W )√

BR(χ̃0

7
−→µ W )2+BR(χ̃0

7
−→τ W )2

with tan2 θ12 (left) plot for a bino dominated

lightest neutralino (LSP) with bino component |N71|2 > 0.95. In the right figure the ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0

7
−→τ W )

versus tan2 θ23 is plotted. Neutrino mass pattern is assumed to be inverted hier-

archical. Choice of parameters are same as that of figure 9.
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The correlation of the ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0
7
−→τ W )

with tan2 θ23 shows a different behaviour

compared to what we have seen in the case of normal hierarchical scenario. This is because

in the case of inverted hierarchical mass pattern of the neutrinos, tan2 θ23 decreases with

increasing b2
µ/b2

τ . One can observe from figures 8 and 10 that if the experimental value of

the ratio
BR(χ̃0

7−→e W )√
BR(χ̃0

7
−→µ W )2+BR(χ̃0

7
−→τ W )2

is ≪ 1 then that indicates a normal hierarchical

neutrino mass pattern for a bino-dominated lightest neutralino LSP whereas a higher value

(∼ 1) of this ratio measured in experiments might indicate that the neutrino mass pattern

is inverted hierarchical. Similarly a measurement of the ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0
7
−→τ W )

can also give

an indication regarding the particular hierarchy of the neutrino mass pattern in the case

of a bino dominated LSP.

6.1.2 Higgsino dominated lightest neutralino

When one considers higher values of the U(1) gaugino mass M1, i.e. M1 > µ and large

value of κ (so that the effective gauge singlet neutrino mass 2κνc is large), the lightest

neutralino is essentially higgsino dominated and it is the LSP. Naturally one needs to

consider a small value of the coupling λ so that the effective µ parameter (µ = 3λνc) is

smaller. In order to look at the lightest neutralino decay branching ratios in this case, we

consider a situation where the higgsino component in χ̃0
7 is |N73|2 + |N74|2 > 0.90. As in

the case of a bino dominated LSP, the generation dependence of the χ̃0
7–ℓi–W couplings

comes through the quantities b2
i . However, because of the large value of the τ Yukawa

coupling, the higgsino–τ mixing is larger and as a result the partial decay width of χ̃0
7 into

(W + τ) is larger than into (W +µ) and (W + e). This feature is shown in figure 11, where

the ratios of branching ratios are plotted against the quantities b2
i /b

2
j . The domination of

BR(χ̃0
7 → τ + W ) over the other two is clearly evident. Nevertheless, all the three ratios

of branching ratios show sharp correlations with the corresponding b2
i /b

2
j . In this figure

the normal hierarchical pattern of the neutrino masses has been considered. As in the case

of a bino LSP, here also the ratios
BR(χ̃0

7
−→µ W )

BR(χ̃0
7
−→τ W )

and
BR(χ̃0

7
−→e W )√

BR(χ̃0
7
−→µ W )2+BR(χ̃0

7
−→τ W )2

show

nice correlations with neutrino mixing angles θ23 and θ13, respectively. This is shown in

figure 12. However, in this case the predictions for these two ratios are very different from

the bino LSP case. The expected value of the ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0
7
−→τ W )

is approximately between

0.05 and 0.10 in a region where one can accommodate the experimental neutrino data.

Similarly, the predicted value of the ratio
BR(χ̃0

7−→e W )√
BR(χ̃0

7
−→µ W )2+BR(χ̃0

7
−→τ W )2

is ≤ 0.006. On

the other hand, there is no such correlations with the solar mixing angle θ12.

Similar correlations of the ratios of branching ratios with b2
i /b

2
j are also obtained for

a higgsino dominated LSP in the case where the neutrino mass pattern is inverted hier-

archical. Once again it shows that the χ̃0
7 decays to (τ + W ) channel is dominant over

the channels (e + W ) and (µ + W ) for any values of b2
i /b

2
j because of the larger τ Yukawa

coupling. On the other hand, the correlations with the neutrino mixing angles show a

behaviour similar to that of a bino LSP with inverted neutrino mass hierarchy though with

much smaller values for the ratios
BR(χ̃0

7
→µ W )

BR(χ̃0
7
→τ W )

and
BR(χ̃0

7
→e W )√

BR(χ̃0
7
→µ W )2+Br(χ̃0

7
→τ W )2

. These are

shown in figure 13. Note that the correlations in this case are not very sharp, especially
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Figure 11. Ratio
BR(χ̃0

7
−→li W )

BR(χ̃0

7
−→lj W )

versus
b2i
b2

j

plot for a higgsino like LSP with higgsino component

(|N73|2 + |N74|2) > 0.95, where i, j, k = e, µ, τ . Neutrino mass pattern is normal hierarchical.

Choice of parameters are M1 = 325GeV, λ = 0.06, κ = 0.65, mν̃c = 300 GeV and mL̃ = 400 GeV.

Mass of the LSP is 98.6GeV. The value of the µ parameter comes out to be -105.9GeV.
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Figure 12. Ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0

7
−→τ W )

versus tan2 θ23 (left),
BR(χ̃0

7
−→e W )√

BR(χ̃0

7
−→µ W )2+BR(χ̃0

7
−→τ W )2

with

tan2 θ13 (right) plot for a higgsino LSP with higgsino component (|N73|2+ |N74|2) > 0.95. Neutrino

mass pattern is normal hierarchical. Choice of parameters are same as that of figure 11.

with tan2 θ12. Thus we see that small values of these ratios (for both normal and inverted

hierarchy) are characteristic features of a higgsino dominated LSP in this model.
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Figure 13. Ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0

7
−→τ W )

versus tan2 θ23 (left),
BR(χ̃0

7
−→e W )√

BR(χ̃0

7
−→µ W )2+Br(χ̃0

7
−→τ W )2

with

tan2 θ12 (right) plot for a higgsino LSP with higgsino component (|N73|2 + |N74|2) > 0.95. Neutrino

mass pattern is inverted hierarchical. Choice of parameters are M1 = 490GeV, λ = 0.07, κ =

0.65, mν̃c = 320GeV and mL̃ = 430GeV. Mass of the LSP is 110.8GeV. The value of the µ

parameter comes out to be -115.3GeV.

6.1.3 νc dominated lightest neutralino

Because of our choice of parameters i.e., a generation independent coupling κ of the gauge

singlet neutrinos and a common VEV νc, the three neutralino mass eigenstates which

are predominantly gauge singlet neutrinos are essentially mass degenerate. There is a very

small mass splitting due to mixing. However, unlike the case of a bino or higgsino dominated

lightest neutralino, these νc dominated lightest neutralino states cannot be considered as

the LSP. This is because in this case the lightest scalar (which is predominantly a gauge

singlet sneutrino ν̃c) is the lightest supersymmetric particle. This is very interesting since

usually one does not get a ν̃c as an LSP in a model where the gauge singlet neutrino

superfield has a large Majorana mass term in the superpotential. However, in this case the

effective Majorana mass term is at the EW scale and there is also a contribution from the

trilinear scalar coupling Aκκ which keeps the mass of the singlet scalar sneutrino smaller.

It is also very interesting to study the decay patterns of the lightest neutralino in this case

since here one can probe the gauge singlet neutrino mass scales at the colliders.

Before discussing the decay patterns of the lightest neutralino which is νc dominated,

let us say a few words regarding their production at the LHC. The direct production of νc

(by νc we mean the νc dominated lightest neutralino in this section) is negligible because

of the very small mixing with the MSSM neutralinos. Nevertheless, they can be produced

at the end of the cascade decay chains of the squarks and gluinos at the LHC. For example,

if the next-to-next-to-lightest SUSY particle (NNLSP) is higgsino dominated (this is the

state above the three almost degenerate lightest neutralinos) and it has a non-negligible

mixing with νc (remember that the higgsino–νc mixing occurs mainly because of the term

λν̂cĤ1Ĥ2 in the superpotential), then the branching ratio of the decay H̃ → Z + νc can be

larger than the branching ratios in the ℓW and νZ channels. This way one can produce

νc dominated lightest neutralino. Similarly, a higgsino dominated lighter chargino can also

produce gauge singlet neutrinos. Another way of producing νc is through the decay of an

NNLSP τ̃1, such as τ̃1 → τ + νc. A detailed discussion of these issues is beyond the scope

of the present paper and we hope to come back to this in a future publication [27].

– 33 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
9

0.5 0.7 0.9 1.1 1.3 1.5

aµ
2 / aτ

2

0.00.0

1.0

2.0

3.0

4.0
B

r(
χ0 7 −

−>
 µ

−
W

) 
/ B

r(
χ0 7 −

−>
 τ−

W
)

NORMAL HIERARCHY

LN RIGHT HANDED NEUTRINO DOMINATED

0.8 1.0 1.2 1.4

bµ
2 / bτ

2

0.4

0.6

0.8

B
r(

χ0 7 −
−>

 µ
−

W
) 

/ B
r(

χ0 7 −
−>

 τ−
W

)

NORMAL HIERARCHY

LN RIGHT HANDED NEUTRINO DOMINATED

Figure 14. Ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0

7
−→τ W )

versus
a2

µ

a2
τ

(left) and versus
b2µ
b2τ

(right) plot for a νc like lightest

neutralino (χ̃0
7) with νc component (|N75|2 + |N76|2 + |N77|2) > 0.99 (left), and >0.97 (right).

Neutrino mass pattern is normal hierarchical. Choice of parameters are for (left) M1 = 405GeV,

λ = 0.29, κ = 0.07, (Aλλ) = −8.2 TeV×λ, (Aκκ) = 165 GeV×κ, mν̃c = 50 GeV and mL̃ = 825 GeV

and for (right) M1 = 405GeV, λ = 0.10, κ = 0.07, (Aλλ) = −2 TeV × λ, (Aκκ) = 165 GeV ×
κ, mν̃c = 50 GeV and mL̃ = 825 GeV. Mass of the lightest neutralino is 129.4GeV (left) and

119.8GeV (right) respectively. The values of the µ parameter are -803.9GeV and -258.8GeV,

respectively.

When one considers higher value of the gaugino mass, i.e. M1 > µ and a small value

of the coupling κ (so that the effective Majorana mass of νc is small, i.e. 2κνc < µ), the

lightest neutralino is essentially νc dominated. As we have mentioned earlier, in this case

the LSP is the scalar partner of νc, i.e. ν̃c. However, the decay of νc into ν+ν̃c is suppressed

compared to the decays νc → ℓi + W and νc → νi + Z that we have considered so far.

Because of this in this section we will neglect the decay νc → ν + ν̃c while discussing the

correlation of the lightest neutralino (χ̃0
7) decays with the neutrino mixing angles.

In this case the coupling of the lightest neutralino (χ̃0
7) with ℓi–W pair depends on

the νc content of χ̃0
7. Note that the νc has a very small mixing with the MSSM neutralino

states. However, in some cases the νc dominated lightest neutralino can have a non-

negligible higgsino component. In such cases the coupling χ̃0
7–ℓi–W depends mainly on

the quantities bi. On the other hand, if χ̃0
7 is very highly dominated by νc, then the

coupling χ̃0
7– ℓi–W has a nice correlation with the quantities ai. So in order to study the

decay correlations of the νc dominated lightest neutralino, we consider two cases (i) νc

component is > 0.99, and (ii) νc component is > 0.97 with some non-negligible higgsino

admixture.

The correlations of the decay branching ratio
BR(χ̃0

7−→µ W )

BR(χ̃0
7
−→τ W )

are shown in figure 14 for

the cases (i) and (ii) mentioned above. As we have explained already, this figure demon-

strates that in case (i) the ratio of the branching ratio is dependent on the quantity a2
µ/a2

τ

whereas in case (ii) this ratio is correlated with b2
µ/b2

τ though there is some suppression due

to large τ Yukawa coupling.

Similar calculations were performed also for the other ratios discussed earlier. For

example, in figure 15 we have shown the variations of the ratio
BR(χ̃0

7
−→e W )

BR(χ̃0
7
−→µ W )

as functions

of a2
e

a2
µ

and b2e
b2µ

for the cases (i) and (ii), respectively. The variation with a2
e

a2
µ

is not sharp and
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Figure 15. Ratio
BR(χ̃0

7
−→e W )

BR(χ̃0

7
−→µ W )

versus
a2

e

a2
µ

(left) and versus
b2e
b2µ

(right) plot for a νc like lightest

neutralino (χ̃0
7) with νc component (|N75|2 + |N76|2 + |N77|2) > 0.99 (left), and >0.97 (right).

Neutrino mass pattern is normal hierarchical. Choice of parameters are same as that of figure 14.
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Figure 16. Ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0

7
−→τ W )

versus tan2 θ23 (left),
BR(χ̃0

7
−→e W )√

BR(χ̃0

7
−→µ W )2+BR(χ̃0

7
−→τ W )2

with

tan2 θ12 (right) plot for a νc dominated lightest neutralino with νc component (|N75|2 + |N76|2 +

|N77|2) > 0.99 (left) and > 0.97 (right). Neutrino mass pattern is normal hierarchical. Choice of

parameters are same as that of figure 14.

dispersive in nature whereas the variation with b2e
b2µ

is very sharp and shows that in this case

the relevant couplings are proportional to be and bµ, respectively.

On the other hand, in case (i) only tan2 θ23 shows a nice correlation with the ratio
BR(χ̃0

7−→µ W )

BR(χ̃0
7
−→τ W )

(see figure 16) and tan2 θ12 or tan2 θ13 does not show any correlation with

the other ratio. The non-linear behaviour of the ratios of branching ratios in case(i) is due

to the fact that the parameters Yνs (which control the ai) appear both in the neutralino

and chargino mass matrices. The charged lepton Yukawa couplings also play a role in

determining the ratios. One can also see that the prediction for this ratio of branching

ratio for case (i), as shown in figure 16, is in the range 0.5–3.5, which is larger compared to

the bino dominated or higgsino dominated cases for both normal and inverted hierarchical

pattern of neutrino masses. Also, the nature of this variation is similar to what we see with

the inverted hierarchical pattern of neutrino masses in the bino or higgsino dominated cases.
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Figure 17. Ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0

7
−→τ W )

versus
a2

µ

a2
τ

(left) and versus
b2µ
b2τ

(right) plot for a νc like lightest

neutralino (χ̃0
7) with νc component (|N75|2 + |N76|2 + |N77|2) > 0.99 (left), and >0.97 (right).

Neutrino mass pattern is inverted hierarchical. Choice of parameters are for (left) M1 = 445GeV,

λ = 0.29, κ = 0.07, (Aλλ) = −8.2 TeV×λ, (Aκκ) = 165 GeV×κ, mν̃c = 50 GeV and mL̃ = 835GeV

and for (right) M1 = 445GeV, λ = 0.10, κ = 0.07, (Aλλ) = −2 TeV × λ, (Aκκ) = 165 GeV ×
κ, mν̃c = 50 GeV and mL̃ = 835 GeV. Mass of the lightest neutralino is 129.4GeV (left) and

119.8GeV (right) respectively.

In case (ii) none of the neutrino mixing angles show very good correlations with the

ratios of branching ratios that we have been discussing. However, one can still observe

some kind of a correlation of the ratio
BR(χ̃0

7
−→e W )√

BR(χ̃0
7
−→µ W )2+BR(χ̃0

7
−→τ W )2

with tan2 θ12. The

prediction for this ratio from the neutrino data is on the smaller side (∼ 0.07).

With the inverted hierarchical neutrino mass pattern, in case (i) one observes a

sharp correlation of the ratio
BR(χ̃0

7−→µ W )

BR(χ̃0
7
−→τ W )

with
a2

µ

a2
τ

(see figure 17). The other two ra-

tios
BR(χ̃0

7
−→e W )

BR(χ̃0
7
−→µ W )

and
BR(χ̃0

7
−→e W )

BR(χ̃0
7
−→τ W )

do not show very sharp correlations with a2
e

a2
µ

and a2
e

a2
τ
,

respectively and we do not plot them here. However, in case (ii) all the three ratios show

nice correlations with the corresponding b2
i /b

2
j . We have shown this in figure 17 only for

b2
µ/b2

τ . In this case the variations of the ratios of branching ratios with neutrino mixing

angles are shown in figure 18.

For the case (i), only tan2 θ13 shows certain correlation with the ratio of branching

ratio shown in figure 18 (right), but we do not show it here.

Finally, we would like to mention that in all these different cases discussed above, the

lightest neutralino can have a finite decay length which can produce displaced vertices in

the vertex detectors. Depending on the composition of the lightest neutralino, one can have

different decay lengths. For example, a bino-dominated lightest neutralino can produce a

displaced vertex ∼ a few mm. Similarly, for a higgsino dominated lightest neutralino,

decay vertices of the order of a few cms can be observed. On the other hand, if the lightest

neutralino is νc dominated, then the decay lengths can be of the order of a few meters.

These are very unique predictions of this model which can, in principle, be tested at the

LHC.
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Figure 18. Ratio
BR(χ̃0

7
−→µ W )

BR(χ̃0

7
−→τ W )

versus tan2 θ23 (left),
BR(χ̃0

7
−→e W )√

BR(χ̃0

7
−→µ W )2+BR(χ̃0

7
−→τ W )2

with

tan2 θ12 (right) plot for a νc dominated lightest neutralino with νc component (|N75|2 + |N76|2 +

|N77|2) > 0.97. Neutrino mass pattern is inverted hierarchical. Choice of parameters are same as

that of figure 17.

7 Summary and conclusion

In this work we have studied a supersymmetric model in detail where the observed pat-

tern of neutrino mass-squared differences and mixing angles are obtained with the help of

three standard model gauge-singlet neutrino superfields, which simultaneously solve the

µ problem of MSSM. The additional terms in the superpotential and the scalar potential

include R-parity violating interactions involving these gauge-singlet neutrino superfields.

The vacuum expectation values of the singlet sneutrinos give rise to effective Majorana

mass terms for the singlet neutrinos, as well as a µ-term, both at the electroweak scale.

This model was introduced in ref. [8] and some phenomenology was discussed for a single

gauge-singlet neutrino superfield. The spectrum and parameter space of this model, with

three gauge singlet neutrino superfields, were discussed in [9]. We have performed a de-

tailed and extensive analysis of this model in the neutrino and neutralino sector with the

inclusion of three generation of gauge singlet neutrino superfields along with the associ-

ated interaction terms. The neutrino mass matrix is obtained because of the electroweak

scale seesaw mechanism involving the gauge-singlet neutrinos and the mixing between the

MSSM neutralinos and the neutrinos. We have done a thorough and systematic study of

the neutrino mass matrix both analytically and numerically and tried to identify the rele-

vant parameters which crucially control the bilarge pattern of neutrino mixing angles. We

show that even with a flavour diagonal structure of the neutrino Yukawa coupling matrix,

two large and one small mixing angles can be generated in this case. Both the normal and

inverted hierarchical pattern of neutrino masses can be obtained with different hierarchies

of the neutrino Yukawa couplings. Because of the presence of the neutrino-neutralino mix-

ing, it is in general difficult to obtain a degenerate mass spectrum of the neutrinos and we

do not consider this possibility in this paper.

We have also looked at the scalar sector of this model and wrote down the neutral

scalar, pseudoscalar and charged scalar mass-squared matrices of this model. The allowed
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regions in the model parameters are obtained which satisfy certain constraints in the scalar

sector. For example, absence of tachyons in the scalar squared-mass eigenvalues puts severe

constraints in the relevant parameter space. With these choices of parameters, satisfying

the scalar sector constraints, we have tried to fit the global three flavour neutrino data with

both normal and inverted hierarchical mass spectrum of the neutrinos. Since this model

involves several free parameters, we have made a few simplifying assumptions which makes

this model more predictive.

Perhaps the most interesting part of this whole analysis is the study of the phenomenol-

ogy of the lightest neutralino which can be the LSP in some cases or it can be the NLSP.

The decay patterns of the lightest neutralino may provide additional information to find

out more about the neutrino mass patterns and mixing angles. We have considered three

different scenarios where the lightest neutralino can be either a bino-dominated one or a

higgsino-dominated one or it can be mostly a gauge-singlet neutrino with very little mix-

ing with the other states. We have also discussed briefly the production mechanism of the

gauge-singlet neutrino dominated lightest neutralino at the LHC. The study of the decay

pattern and the production mechanism of the lightest neutralino in this last mentioned

scenario is extremely important because it will help in probing the mass scale and the

properties of the gauge-singlet neutrinos at the LHC. The presence of the gauge-singlet

neutrino dominated lightest neutralino can also distinguish this model from the usual bi-

linear R-parity violating model of generating neutrino masses and mixing. An important

test of this model, as a supersymmetric solution to the observed neutrino mass patterns

and mixing, can be performed by measuring the ratios of the decay branching ratios of the

lightest neutralino in the final states involving a charged lepton and a W-boson. We have

shown explicitly that these ratios of branching ratios have certain correlations with the

neutrino mixing angles which depend on the nature of the LSP as well as on the pattern of

the neutrino mass hierarchies considered. The study of the higgsino dominated LSP case is

also very important because it can provide information about the µ parameter which is de-

termined in terms of the vacuum expectation values of the gauge-singlet sneutrinos. Thus

one may have information about the gauge-singlet neutrino mass scale and its coupling,

from the decay pattern of the higgsino dominated LSP. Collider phenomenology of this

model at the LHC is very rich both in the fermionic and the scalar sector. For example,

pair produced lightest neutralino at the LHC give rise to the final states µµWW , ττWW

and µτWW with a certain ratio for their production rates nicely correlated with tan2 θ23.

These production rates also depend on the dominant component of the lightest neutralino

as well as on the different hierarchical patterns of the three light neutrino masses. Another

important testable prediction of this model is the measurement of displaced vertices in the

decay of the lightest neutralino. This decay length can vary in the range of a few mm to

∼ 1 meter depending on the nature of the lightest neutralino. We hope to come back to

these issues in a future publication [27].
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A Scalar mass squared matrices

In this appendix we present the details of various scalar mass squared matrices. For

the convenience of the reader let us repeat that the scalar mass squared matrices are now

8×8, considering all three generations of sneutrinos (both doublet and singlet) and charged

sleptons. These enhancements are essentially due to the mixing of neutral Higgs bosons

with both the doublet and singlet sneutrinos and the mixing of charged Higgs with the

charged sleptons.

A.1 Neutral scalar mass squared matrices

The decomposition of various neutral scalar fields in real(R) and imaginary(I) parts are

as follows

H0
1 = H0

1R + iH0
1I ,

H0
2 = H0

2R + iH0
2I ,

ν̃c
k = ν̃c

kR + iν̃c
kI ,

ν̃k = ν̃kR + iν̃kI . (A.1)

Only the real components get VEVs as indicated in eq. (2.3).

The entries of the scalar and pseudoscalar mass-squared matrices are defined as

(M2
P )αβ = 〈1

2

∂2Vneutral

∂φα
I∂φβ

I
〉,

(M2
S)αβ = 〈1

2

∂2Vneutral

∂φα
R∂φβ

R
〉, (A.2)

where

φα
I = H0

1I ,H0
2I , ν̃c

kI , ν̃kI ,

φα
R = H0

1R,H0
2R, ν̃c

kR, ν̃kR. (A.3)

Note that the Greek indices α, β are used to refer various scalar and pseudoscalar Higgs and

both doublet and singlet sneutrinos, that is H0
1 ,H0

2 , ν̃c
k, ν̃k, whereas k is used as a subscript

to specify various flavours of doublet and singlet sneutrinos i.e., k = e, µ, τ in the flavour

(weak interaction) basis.
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A.1.1 CP-odd neutral mass squared matrix

The basis for CP-odd or pseudoscalar mass-squared matrix is

ΦT
P = (H0

1I ,H0
2I , ν̃c

nI , ν̃nI). (A.4)

The pseudoscalar mass term in the Lagrangian is of the form

Lmass
pseudoscalar = ΦT

PM2
P ΦP , (A.5)

where M2
P is an 8× 8 symmetric matrix. Using eq. (2.7), (2.8), and eq. (2.9), the indepen-

dent elements are given by

(M2
P )H

0
1IH0

1I =
1

v1





∑

j

λjv2

(

∑

ik

κijkνc
i ν

c
k

)

+
∑

j

λjrjv2
2 + µ

∑

j

rj
cνj +

∑

i

(Aλλ)iνc
i v2



 ,

(M2
P )H

0
1IH0

2I =
∑

i,j,k

λjκijkνc
i ν

c
k +

∑

i

(Aλλ)iνc
i ,

(M2
P )H

0
2IH0

2I =
1

v2



−
∑

j

ρj





∑

l,k

κljkνc
l ν

c
k



−
∑

i,j

(AνYν)
ijνiν

c
j +

∑

i

(Aλλ)iνc
i v1



 ,

(M2
P )H

0
1I ν̃c

mI = −2
∑

j

λjumj
c v2 − µrm + λm

∑

i

ri
cνi + (Aλλ)mv2,

(M2
P )H

0
1I ν̃mI = −

∑

j

λjY mj
ν v2

2 − µrm
c ,

(M2
P )H

0
2I ν̃c

mI = 2
∑

j

umj
c ρj −

∑

i

(AνYν)
imνi + (Aλλ)mv1,

(M2
P )H

0
2I ν̃mI = −

∑

i,j,k

Y mj
ν κijkνc

i ν
c
k −

∑

j

(AνYν)
mjνc

j ,

(M2
P )ν̃

c
nI ν̃c

mI = −2
∑

j

κjnmζj +4
∑

j

umj
c unj

c + ρmρn + hnmv2
2 +(m2

ν̃c)nm −2
∑

i

(Aκκ)inmνc
i ,

(M2
P )ν̃

c
nI ν̃mI = 2

∑

j

umj
c Y nj

ν v2 − Y nm
ν

∑

i

ri
cνi + rn

c rm + µv1Y
nm
ν − λmrn

c v1 − (AνYν)
nmv2,

(M2
P )ν̃nI ν̃mI =

∑

j

Y mj
ν Y nj

ν v2
2 + rm

c rn
c + (m2

L̃
)nm + γgξυδmn, (A.6)

where

hnm = λnλm +
∑

i

Y in
ν Y im

ν . (A.7)

We have checked that one eigenvalue of this 8 × 8 matrix is zero corresponding to the

neutral Goldstone boson.

A.1.2 CP-even neutral mass squared matrix

The basis for the CP-even or scalar mass-squared matrix is

ΦT
S = (H0

1R,H0
2R, ν̃c

nR, ν̃nR). (A.8)
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The scalar mass term in the Lagrangian is of the form

Lmass
scalar = ΦT

SM2
SΦS , (A.9)

where M2
S is an 8 × 8 symmetric matrix. The independent entries using eq. (2.7), (2.8),

and eq. (2.9) are given by

(M2
S)H

0
1RH0

1R =
1

v1





∑

j

λjv2

(

∑

ik

κijkνc
i ν

c
k

)

+
∑

j

λjrjv2
2 + µ

∑

j

rj
cνj +

∑

i

(Aλλ)iνc
i v2





+ 2γgv
2
1 ,

(M2
S)H

0
1RH0

2R = −2
∑

j

λjρjv2 −
∑

i,j,k

λjκijkνiν
c
k − 2γgv1v2 −

∑

i

(Aλλ)iνc
i ,

(M2
S)H

0
2RH0

2R =
1

v2



−
∑

j

ρj





∑

l,k

κljkνc
l ν

c
k



−
∑

i,j

(AνYν)
ijνiν

c
j +

∑

i

(Aλλ)iνc
i v1



+ 2γgv
2
2 ,

(M2
S)H

0
1Rν̃c

mR = −2
∑

j

λjumj
c v2 + 2µv1λ

m − λm
∑

i

ri
cνi − µrm − (Aλλ)mv2,

(M2
S)H

0
1Rν̃mR = −

∑

j

λjY mj
ν v2

2 − µrm
c + 2γgνmv1,

(M2
S)H

0
2Rν̃c

mR = 2
∑

j

umj
c ρj + 2λmµv2 + 2

∑

i

Y im
ν ri

cv2 +
∑

i

(AνYν)
imνi − (Aλλ)mv1,

(M2
S)H

0
2Rν̃mR = 2

∑

j

Y mj
ν ρjv2 +

∑

i,j,k

Y mj
ν κijkνc

i ν
c
k − 2γgνmv2 +

∑

j

(AνYν)
mjνc

j ,

(M2
S)ν̃

c
nRν̃c

mR = 2
∑

j

κjnmζj + 4
∑

j

umj
c unj

c + ρmρn + hnmv2
2 + (m2

ν̃c)mn + 2
∑

i

(Aκκ)imnνc
i ,

(M2
S)ν̃

c
nRν̃mR = 2

∑

j

Y nj
ν umj

c v2 + Y nm
ν

∑

i

ri
cνi + rn

c rm − µv1Y
nm
ν − λmrn

c v1 + (AνYν)
nmv2,

(M2
S)ν̃nRν̃mR =

∑

j

Y nj
ν Y mj

ν v2
2 + rm

c rn
c + γgξυδnm + 2γgνnνm + (m2

L̃
)mn, (A.10)

where eq. (A.7) has been used.

A.2 Charged scalar mass squared matrix

The charged scalar mass squared matrix considering all three generations of both left

handed and right handed charged sleptons is also an 8×8 matrix. For the sake of complete-

ness, here we give the expressions for various elements of the charged scalar mass-squared

matrix. The elements of the charged scalar mass-squared matrix are defined as

(M2
C)αβ = 〈1

2

∂2Vcharged

∂φcα∂φcβ
〉, (A.11)

where

φcα

= H+
1 ,H+

2 , ẽ+
Rk, ẽ+

Lk. (A.12)
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The basis for charged scalar mass-squared matrix is

Φ+T

C = (H+
1 ,H+

2 , ẽ+
Rn, ẽ+

Ln), (A.13)

and the charged scalar mass term in the Lagrangian is of the form

Lmass
charged scalar = Φ−T

C M2
CΦ+

C , (A.14)

where M2
C is an 8 × 8 symmetric matrix. The independent elements of M2

C using

eqs. (2.7), (2.8), and eq. (2.9) are given by

(M2
C)H1H1 =

1

v1





∑

j

λjζjv2 + µ
∑

j

rj
cνj +

∑

i

(Aλλ)iνc
i v2



+
∑

i,j,k

Y ij
e Y kj

e νiνk

− g2
2

2

(

∑

i

ν2
i − v2

2

)

,

(M2
C)H1H2 = −

∑

j

λj2

v1v2 +
∑

j

λjrjv2 +
∑

j

λjuij
c νc

i +
g2

2

2
v1v2 +

∑

i

(Aλλ)iνc
i ,

(M2
C)H2H2 =

1

v2



−
∑

j

ρjζj −
∑

i,j

(AνYν)
ijνiν

c
j +

∑

i

(Aλλ)iνc
i v1



+
g2

2

2

(

∑

i

ν2
i + v2

1

)

,

(M2
C)H1ẽRm = −

∑

i

ri
cY

im
e v2 −

∑

i

(AeYe)
imνi,

(M2
C)H1ẽLm = −µrm

c −
∑

i,j

Y mj
e Y ij

e νiv1 +
g2
2

2
νmv1,

(M2
C)H2ẽRm = −µ

∑

i

Y mi
e νi −

∑

i

Y im
e ri

cv1,

(M2
C)H2ẽLm = −

∑

j

Y mj
ν ζj +

g2
2

2
νmv2 −

∑

i

(AνYν)
miνc

i ,

(M2
C)ẽRnẽRm =

∑

i,j

Y im
e Y jn

e νiνj +
∑

i

Y im
e Y in

e v2
1 + (m2

ẽc)mn − g2
1

2
ξυδmn,

(M2
C)ẽRnẽLm = −µY mn

e v2 + (AeYe)
nmv1,

(M2
C)ẽLnẽLm = rm

c rn
c +

∑

j

Y mj
e Y nj

e v2
1 + γgξυδmn − g2

2

2
ξυδmn +

g2
2

2
νmνn + (m2

L̃
)mn. (A.15)

As mentioned earlier, we have computed the eigenvalues of the charged scalar mass-

squared matrix numerically and ensured that seven of its eigenvalues are positive and there

is a charged Goldstone boson.
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B Feynman rules

In this appendix we will study the relevant Feynman rules for the LSP decay calcula-

tions [28, 29]. The required Feynman rules are

1. Neutralino-neutralino - Z0,

2. Chargino-neutralino - W±.

B.1 Neutralino-neutralino-Z0 and chargino-chargino-Z0,γ

For neutralinos the following relations between mass and weak eigenstates are very useful

PLB̃0 = PLN∗
i1χ̃

0
i ,

PRB̃0 = PRNi1χ̃
0
i ,

PLW̃ 0
3 = PLN∗

i2χ̃
0
i ,

PRW̃ 0
3 = PRNi2χ̃

0
i ,

PLH̃j = PLN∗
i,j+2χ̃

0
i ,

PRH̃j = PRNi,j+2χ̃
0
i , where j = 1, 2,

PLνk
L = PLN∗

i,k+7χ̃
0
i ,

PRνk
L = PRNi,k+7χ̃

0
i ,

PLνck

R = PLN∗
i,k+4χ̃

0
i ,

PRνck

R = PRNi,k+4χ̃
0
i , where k = 1, 2, 3, (B.1)

with i varies from 1 to 10 and

PL =

(

1 − γ5

2

)

, PR =

(

1 + γ5

2

)

. (B.2)

In terms of the four component spinors χi for charginos, the following relations between

mass and weak eigenstates are very useful

PLW̃ = PLV ∗
i1χ̃i,

PRW̃ = PRUi1χ̃i,

PLH̃ = PLV ∗
i2χ̃i,

PRH̃ = PRUi2χ̃i,

PLlj = PLV ∗
i,j+2χ̃i,

PRlj = PRUi,j+2χ̃i, (B.3)

where j = 1, 2, 3, and i varies from 1 to 5.

So in terms of physical or mass eigenstates of charginos and neutralinos the required

interaction terms are as follows

LZ0χ̃χ̃ =

(

g

cos θW

)

Zµ
¯̃χ+

i γµ
[

O′L
ij PL + O′R

ij PR

]

χ̃+
j

+

(

g

2 cos θW

)

Zµ
¯̃χ0

i γ
µ
[

O′′L
ij PL + O′′R

ij PR

]

χ̃0
j ,

Lγχ̃+χ̃− = −eAµ
¯̃χ+

i γµχ̃+
i , (B.4)
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χ̃+
j

χ̃+
i

Z0 (ig/2 CθW
) γµ

[

O′L
ij (1 − γ5) + O′R

ij (1 + γ5)
]

χ̃0
j

Z0

χ̃0
i

(ig/2 CθW
) γµ

[

O′′L
ij (1 − γ5) + O′′R

ij (1 + γ5)
]

χ̃+
i

χ̃+
i

γ −ieγµ

χ̃+
j

χ̃0
i

W+ (ig/2)γµ
[

OL
ij (1 − γ5) + OR

ij (1 + γ5)
]

where CθW
= cos θW

Figure 19. Feynman rules for interaction of neutral and charged gauge boson with charginos and

neutralinos.

where

O′L
ij = −Vi1V

∗
j1 −

1

2
Vi2V

∗
j2 + δij sin2 θW ,

O′R
ij = −U∗

i1Uj1 −
1

2
U∗

i2Uj2 −
1

2
U∗

i,k+2Uj,k+2,+δij sin2 θW ,

O′′L
ij = −1

2
Ni3N

∗
j3 +

1

2
Ni4N

∗
j4 −

1

2
Ni,k+7N

∗
j,k+7,

O′′R
ij = −O′′L

ij

∗
, k = 1, 2, 3. (B.5)

In deriving eq. (B.5) unitary properties of U and V matrices has been used.

B.2 Chargino-neutralino — W±

Now in terms of physical chargino and neutralino states the relevant interaction term is

LW∓χ̃±χ̃0 = LW−χ̃+χ̃0 + LW+χ̃−χ̃0 , (B.6)

where LW+χ̃−χ̃0 is the hermitian conjugate of LW−χ̃+χ̃0 and

LW−χ̃+χ̃0 = gW−
µ

¯̃χ0
i γ

µ
[

OL
ijPL + OR

ijPR

]

χ̃+
j , (B.7)
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with

OL
ij = Ni2V

∗
j1 −

1√
2
Ni4V

∗
j2,

OR
ij = N∗

i2Uj1 +
1√
2
N∗

i3Uj2 +
1√
2
N∗

i,k+7Uj,k+2,

(B.8)

where k = 1, 2, 3.

The Feynman rules are shown in figure 19. The matrices O′L
ij , O′R

ij , O′′L
ij , O′′R

ij and OL
ij ,

OR
ij are defined by eq. (B.5) and eq. (B.8), respectively.
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